Pressure Cooking Triumphs: Maximizing Nutrient Bioavailability and Minimizing Flatulence Factors in Cowpea (Vigna unguiculata) Through Modern Culinary Techniques

Main Article Content

Sodeeq O Abubakar
Mutiu A Alabi
Rasheed B Ibrahim
Abdulmuiz O Sulaimon
Precious O Bamigboye
Emmanuel O Ajani

Abstract

Cowpea (Vigna unguiculata), a nutrient-dense legume, contains flatulence-inducing oligosaccharides and antinutritional factors that limit its utilization. This study evaluated the effects of traditional cooking (soaking, gas stove cooking) and modern cooking (pressure cooking, bicarbonate cooking) methods on two cowpea varieties (brown: I.Ar 48; white: I.Ar 256 -Vita 5) to optimize nutrient retention and reduce antinutrients. Proximate composition, oligosaccharides (raffinose, stachyose), antioxidants, antinutrients (phytate, oxalate), and mineral bioavailability were analyzed. Pressure cooking reduced raffinose and stachyose by 73.7% (1.67 mg/ml) and 81.1% (9.64 mg/ml), respectively, in the brown variety, outperforming other methods. Bicarbonate cooking decreased phytate by 48.5%, while pressure cooking remained 12.3% higher crude protein compared to traditional boiling. Moisture content increased by 15–20% in soaked samples, whereas pressure cooking enhanced carbohydrate retention (68.2%) through the process of starch gelatinization. The brown variety retained 25–30% higher antioxidants post-cooking due to polyphenol-rich seed coats, while the white variety showed superior mineral retention (Fe: 8.2 mg/100g; Zn: 3.1 mg/100g) with 40% lower oxalate levels. Modern methods, particularly pressure cooking, balanced antinutrient reduction (phytate: 50%) with improved mineral bioavailability (Fe absorption: 30–50%). These findings highlight pressure cooking as the optimal method to mitigate flatulence factors while preserving nutrients, advocating its adoption to enhance cowpea’s dietary value.

Metrics

Metrics Loading ...

Article Details

How to Cite
Abubakar, S. O., Alabi, M. A., Ibrahim, R. B., Sulaimon, A. O., Bamigboye, P. O., & Ajani, E. O. (2025). Pressure Cooking Triumphs: Maximizing Nutrient Bioavailability and Minimizing Flatulence Factors in Cowpea (Vigna unguiculata) Through Modern Culinary Techniques. Tropical Journal of Phytochemistry and Pharmaceutical Sciences, 4(9), 390 – 397. https://doi.org/10.26538/tjpps/v4i9.3
Section
Articles

References

Yanni AE, Iakovidi S, Vasilikopoulou E, Karathanos VT. Legumes: A Vehicle for Transition to Sustainability. Nutrients. 2023; 16(1): 98.

Semba RD, Ramsing R, Rahman N, Kraemer K, Bloem MW. Legumes as a sustainable source of protein in human diets. Glob. Food Secur. 2021; 28: 100520.

Boukar O, Belko N, Chamarthi S, Togola A, Batieno J, Owusu E,. Cowpea (Vigna unguiculata): Genetics, genomics and breeding. Plant Breeding. 2019; 138(4): 415-424.

Quenum AJC, Pasquet RS, Bodian A, Fonceka D, Djiboune YR, Cisse N,. Molecular characterization of cowpea [Vigna unguiculata (L.) Walp.] subspecies with SSR markers. Genet Resour Crop Evol. 2024; 71(5): 1785-1793.

Akissoé L, Madodé YE, Hemery YM, Donadjè BV, Icard-Vernière C, Hounhouigan DJ, Impact of traditional processing on proximate composition, folate, mineral, phytate, and alpha-galacto-oligosaccharide contents of two West African cowpea (Vigna unguiculata L. Walp) based doughnuts. J. Food Compos Anal. 2021; 96: 103753.

Szczebyło A, Halicka E, Jackowska M, Rejman K. Analysis of the Global Pulses Market and Programs Encouraging Consumption of This Food. Zesz. Nauk. Szk. Gł. Gospod. Wiej. Warsz., Probl. Rol. Światowego 2019; 19(34): 85-96.

Didinger C, Thompson H. The role of pulses in improving human health: A review. Legume Science. 2022; 4(4): e147.

Sombié P, Compaoré M, Coulibaly AY, Ouédraogo JT, Tignégré JS, Kiendrébéogo M. Antioxidant and Phytochemical Studies of 31 Cowpeas (Vigna unguiculata (Walp L)) Genotypes from Burkina. Foods. 2018; 7(9). 143.

Silva ACd, Barbosa MdF, Silva PBd, Oliveira JPd, Silva TLd, Teixeira Junior DL. Health Benefits and Industrial Applications of Functional Cowpea Seed Proteins. Grain and Seed Proteins Functionality. London: IntechOpen; 2021.

Awika JM, Duodu KG. Bioactive polyphenols and peptides in cowpea (Vigna unguiculata) and their health promoting properties: A review. J Funct Foods. 2017; 38: 686-697.

Gonçalves A, Goufo P, Barros A, Domínguez-Perles R, Trindade H, Rosa EA. Cowpea (Vigna unguiculata L. Walp), a renewed multipurpose crop for a more sustainable agri-food system: nutritional advantages and constraints. J Sci Food Agric. 2016; 96(9): 2941-2951.

Abebe BK, Alemayehu MT. A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets. J Agric Food Res. 2022; 10: 100383.

Devi S. Nutritional Properties and Utilization of Cowpea Seeds, Leaves and Their Health Benefits. JoARBSBT. 2021; 3: 1-4.

Shahat MS, Sharaf AM, Karema AM, Abd El‑Naby TM. The Quality Evaluation of Cowpea Seeds as Affected by Gamma Irradiation: Evaluation of Cooking Aspects, Nutritional, Digestibility, Starch structure, Flatulent Effect and Sensory Improvement. Curr Sci Int. 2017; 6(1): 93-102.

Affrifah NS, Phillips RD, Saalia FK. Cowpeas: Nutritional profile, processing methods and products, A review. Legume Sci. 2022; 4(3): e131.

Liu K, Zheng J, Wang X, Chen F. Effects of household cooking processes on mineral, vitamin B, and phytic acid contents and mineral bioaccessibility in rice. Food Chem. 2019; 280: 59-64.

Kanchana V, Chellappa AR. Effect of Pressure Cooking and Microwave Cooking on the Nutritional Quality of Selected Legumes. IJCRT. 2021; 9(7): 234-239.

Ezegbe CC, Nwosu JN, Owuamanam CI, Victor-Aduloju TA, Nkhata SG. Proximate composition and anti-nutritional factors in Mucuna pruriens (velvet bean) seed flour as affected by several processing methods. Heliyon. 2023; 9(8): e18728.

Uzogara S, Morton I, Daniel J. Changes in some antinutrients of cowpea (Vigna unguiculata) processed with “kanwa” alkaline salt. Plant Foods Hum Nutr. 1990; 40: 249-258.

Jayathilake C, Visvanathan R, Deen F, Bangamuwage R, Jayawardana B, Nammi S,. Cowpea: An overview on its nutritional facts and health benefits: Nutritional and Health Properties of Cowpea. J Sci Food Agric. 2018; 98(13): 4793-4806.

Beshaw T, Demssie K, Tefera M, Guadie A. Determination of proximate composition, selected essential and heavy metals in sesame seeds (Sesamum indicum L.) from the Ethiopian markets and assessment of the associated health risks. Toxicol Rep. 2022; 9: 1806-1812.

Aguirre J. The Kjeldahl Method. In: Aguirre J, editor. The Kjeldahl Method: 140 Years. Cham: Springer Nature Switzerland; 2023. 53-78 p.

Bankaji I, Kouki R, Dridi N, Ferreira R, Hidouri S, Duarte B,. Comparison of Digestion Methods Using Atomic Absorption Spectrometry for the Determination of Metal Levels in Plants. Separations. 2023; 10(1): 40.

Karamad D, Khosravi-Darani K, Hosseini H, Tavasoli S. Analytical procedures and methods validation for oxalate content estimation. Biointerface Res Appl Chem. 2019; 9(5): 4305-4310.

Sunday A, Orjiekwe C, Ehiagbonare J. Determination of alkaloids and oxalates in some selected food samples in Nigeria. Afr J Biotechnol. 2009; 8(1): 110-112.

Sahoo M, Balasubramaniam S, Kumar V, Naik S. Investigation of Structural and Morphological Alterations and Antinutrient Reduction in Bitter Yam (Dioscorea bulbifera) Induced by Different Processing Techniques. J. Food Process Eng. 2025; 48(6): e70100.

Garcia-Villanova R, Garcia-Villanova RJ, Lope C. Determination of Phytic Acid by Complexometric Titration of Excess of Iron (III). The Analyst. 1982; 107(1281): 1503-1506.

Marolt G, Kolar M. Analytical Methods for Determination of Phytic Acid and Other Inositol Phosphates: A Review. Molecules. 2020; 26(1): 174.

Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey RP. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules. 2022; 27(4): 1326.

Abonyi O, Anosike C, Ogbodo N, Ezugwu A, Uroko R, Ani C. DPPH (1,1-Diphenyl-2-Picrylhydrazyl) Radical Scavenging Activity of Some Ethnomedicinal Plants in Nigeria. 2015; 7(2): 104-109.

Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey R. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules. 2022; 27(4): 1326.

Khalid A, Ansari H, Sindhav G. Phytochemical screening, in vitro antioxidant activity, and HPTLC fingerprinting for Gmelina arborea Roxb. leaf extracts. World Sci. News. 2022;171.

Abiodun O. Nutritional/Chemical Constituents and Free Radical Scavenging Potentials of the Aqueous Extract of Phoenix dactylifera Fruit. Khalii-Ligya J Dent Med Res. 2024; 8(1): 74-86.

Das A, Kalita A, Raychaiudhuri U, Chakraborty R. Synergistic effect of herbal plant extract (Hibiscus sabdariffa) in maintain the antioxidant activity of decaffeinated green tea from various parts of Assam. J Food Sci. Technol. 2019; 56(11): 5009-5016.

Natarajan B, Panda A, Raj NR, Shrivastava A, Prathani R. The Evaluation of Nitric Oxide Scavenging Activity of Acalypha indica Linn Root. Asian J Res Chem. 2009; 2: 148-150.

Awah F, Wirnkor V. Antioxidant activity, nitric oxide scavenging activity and phenolic content of Ocimum gratissimum leaf extract. J Med Plant Res. 2010; 4: 2479-2487.

Amudha M, Rani S. Evaluation of In Vitro Antioxidant Potential of Cordia retusa. Indian J Pharm Sci. 2016; 78(1): 80-86.

Airin P, Islam S. Measurement of Total Phenolics Using Modified Folin-Ciocalteu Method Processing. JAEC. 2022; 22: 24-30.

Lamuela-Raventós RM. Folin-Ciocalteu method for the measurement of total phenolic content and antioxidant capacity: Recent Trends and Applications. 2017. 107-115 p.

Smith J, Doe J. Climate Change Impacts on Coastal Ecosystems. Environ. Sci J. 2015; 82(3): 150-165.

Liu Y, Ragaee S, Marcone M, Abdel-Aal E-S. Effect of different cooking methods and heating solutions on nutritionally‐important starch fractions and flatus oligosaccharides in selected pulses. Cereal Chem. 2020;97.

Karunarathna S, Wickramasinghe I, Brennan C, Truong T, Navaratne S, Chandrapala J. Investigating the impact of boiling and pressure cooking on resistant starch levels in food.

Int. J. Food Sci. Technol. 2024; 59(6): 3907-3917.

Bemiller J. Carbohydrate Analysis. 2017. 333-360 p.

Garcia-Alonso A, Goñi I, Saura-Calixto F. Resistant starch and potential glycemic index of raw and cooked legumes (lentils, chickpeas and beans). Zeitschrift fur Lebensmittel -Untersuchung und -Forschung. 1998; 206: 284-287.

Carmona-García R, Osorio-Díaz P, Agama E, Tovar J, Bello-Pérez L. Composition and effect of soaking on starch digestibility of Phaseolus vulgaris (L.) cv. ‘Mayocoba’. Int J Food Sci Technol. 2007; 42(3): 296-302.

Brummer Y, Kaviani M, Tosh S. Structural and functional characteristics of dietary fibre in beans, lentils, peas and chickpeas. Food Res Int. 2015; 67: 117-125.

Imungi J, Potter N. Nutrient Contents of Raw and Cooked Cowpea Leaves. J Food Sci. 2006; 48(4): 1252-1254.

Silva D, Santos C, Seido S, Coelho W, Aquino D. Retention of proteins and minerals after cooking in cowpea genotypes. Pesqui Agropecu Trop. 2017; 47(3): 353-359.

Meiners C, Derise N, Lau H, Crews M, Ritchey S, Murphy E. The content of nine mineral elements raw and cooked mature dry legumes. J Agri Food Chem. 2002; 24(6): 1126-1130.

Hoque M, Qureshi I, Bangroo S, Mahdi S, Sheikh F, Bhat M. Reduction of Phytic Acid and Enhancement of Bioavailable Micronutrients in Common Beans (Phaseolus vulgaris L.) in Changing Climatic Scenario. 2022. 59-76 p.

Sathe SK, Venkatachalam M. Influence of processing technologies on phytate and its removal. 2001. 157-188 p.

Shi J, Arunasalam K, Yeung D, Kakuda Y, Mittal G, Jiang Y. Saponins from Edible Legumes: Chemistry, Processing, and Health Benefits. J Med Food. 2004; 7(1): 67-78.

Sánchez-Velázquez O, Ribéreau S, Mondor M, Cuevas-Rodriguez E-O, Arcand Y, Hernandez Alvarez AJ. Impact of processing on the in vitro protein quality, bioactive compounds, and antioxidant potential of 10 selected pulses. Legume Sci. 2021; 3(2): e88.

Juajun O, Vanhanen L, Sangketkit C, Savage G. Effect of Cooking on the Oxalate Content of Selected Thai Vegetables. Food Nutr Sci. 2012; 03: 1631-1635.

Savage G, Vanhanen L, Mason S, Ross A. Effect of Cooking on the Soluble and Insoluble Oxalate Content of Some New Zealand Foods. J. Food Compos. Anal. 2000; 13: 201-206.

Vijayakumari K, Pugalenthi M, Vellingiri V. Effect of soaking and hydrothermal processing methods on the levels of antinutrients and in vitro protein digestibility of Bauhinia purpurea L. seeds. Food Chem. 2007; 103: 968-975.

Abbas Y, Ahmad A. Impact of Processing on Nutritional and Antinutritional Factors of Legumes: A Review. Ann Food Sci Technol. 2018; 19(2): 199-215.

Natella F, Belelli F, Ramberti A, Scaccini C. Microwave and traditional cooking methods: Effect of cooking on antioxidant capacity and phenolic compounds content of seven vegetables. J Food Biochem. 2010; 34: 796-810.

Lafarga T, Vinas I, Bobo G, Simó J, Aguiló-Aguayo I. Effect of steaming and sous vide processing on the total phenolic content, vitamin C and antioxidant potential of the genus Brassica. Innov Food Sci Emerg Technol. 2018; 47: 412-420.

Drinkwater JM, Tsao R, Liu R, Defelice C, Wolyn DJ. Effects of cooking on rutin and glutathione concentrations and antioxidant activity of green asparagus (Asparagus officinalis) spears. J Funct Foods. 2015; 12: 342-453.

Arfaoui L. Dietary Plant Polyphenols: Effects of Food Processing on Their Content and Bioavailability. Molecules. 2021; 26(10): 2959.

Schoeninger V, Coelho S, Christ D, Sampaio S. Processing parameter optimization for obtaining dry beans with reduced cooking time. LWT - Food Sci Technol. 2014; 56(1): 49-57.

Antony A, Farid M. Effect of Temperatures on Polyphenols during Extraction. Appl Sci. 2022; 12(4): 2107.

Chen J-C, Yeh J-Y, Chen P-C, Hsu C-K. Phenolic content and DPPH radical scavenging activity of yam-containing surimi gels influenced by salt and heating. Asian J Health Inf Sci. 2007; 2: 1-11.

Yamaguchi T, Mizobuchi T, Kajikawa R, Kawashima H, Miyabe F, Terao J. Radical-Scavenging Activity of Vegetables and the Effect of Coking on Their Activity. Food Sci Technol Res. 2001; 7(3): 250-257.