A Review of the Preparation, Enhancement and Properties of Plant Oil-Based Biolubricant
DOI:
https://doi.org/10.26538/tjpps/v3i9.2Keywords:
Biodegradability, Additives, Epoxidation, Transesterification, Chemical modificationAbstract
The employment of lubricants derived from fossil fuels has rapidly lost preference in favour of its equivalent, known as biolubricants. This shift results from the harmful environmental implications and non-biodegradability of items obtained from fossil fuels. They contaminate the land, water, and air, harming both plant and human life. Thus, the requirement for substitutes. Biolubricants are not as widely used as those derived from fossil fuels despite their biodegradability and sustainability. The use of biolubricants can only surpass that of fossil fuels if research and development are encouraged. The need for biolubricants surged in tandem with the introduction of environmental rules aimed at curbing environmental damage. Because they are renewable, eco-friendly, and biodegradable, vegetable oils have the potential to be used as base fluids in biolubricants. They have superior physicochemical qualities, such as enhanced friction coefficient, greater viscosity index, and excellent lubricity, when produced properly. They have higher physicochemical qualities (high flash points, pour points, greater viscosity index, friction coefficient, and better skin compatibility) when handled properly. Even though using an untreated vegetable oil lubricant has certain disadvantages, such as poor oxidative stability and poor low temperature performance, these characteristics have been enhanced by the application of various chemical modification techniques, including epoxidation, hydrogenation, transesterification, and formation of estolides. An overview of the most recent developments in novel chemical modification techniques that have produced biolubricants with enhanced physicochemical qualities is given in this article.
References
Uppar R, Dinesha P, Kumar S. A critical review on vegetable oil-based bio-lubricants: preparation, characterization, and challenges. Environ. Dev. Sust. 2023; 25(9):9011-46.
Ingole S, Charanpahari A, Kakade A, Umare SS, Bhatt DV, Menghani J. Tribological behavior of nano TiO2 as an additive in base oil. Wear 2013; 301(1-2): 776-785.
Ajay Kumar P, Vishnu Namboodiri V, Omrani E, Rohatgi P, Menezes PL. Solid Lubricants: Classification, Properties, and Applications. Self-Lubricating Composites. 2022:1-29.
Karmakar G, Ghosh P, Sharma BK. Chemically modifying vegetable oils to prepare green lubricants. Lubr. 2017; 5(4):44.
Robert, M., Gresham., Neil, M., Canter., Evan, S., Zabawski., Min, Zou. Lubr. 2013; 1-77. doi: 10.5772/56043
Malik MA, Kalam MA, Mujtaba MA, Almomani F. A review of recent advances in the synthesis of environmentally friendly, sustainable, and nontoxic bio-lubricants: Recommendations for the future implementations. Environ. Technol. Innov. 2023;103366.
Luna FM, Rocha BS, Rola Jr EM, Albuquerque MC, Azevedo DC, Cavalcante Jr CL. Assessment of biodegradability and oxidation stability of mineral, vegetable and synthetic oil samples. Ind. Crops Prod. 2011; 33(3):579-83.
Sankarannair S, Nair AA, Bijo BV, Das HK, Sureshkumar H. Biolubricant from pongamia oil. InTribology in materials and manufacturing-wear, friction and lubrication 2020. Rijeka, Croatia: IntechOpen.
Pichler J, Maria Eder R, Besser C, Pisarova L, Dörr N, Marchetti-Deschmann M, Frauscher M. A comprehensive review of sustainable approaches for synthetic lubricant components. Green Chem. Letters Rev. 2023 Jan 2;16(1):2185547.
Kamyab B, Beims R, Chambers DW, Bassi AS, Xu C. Sustainable production of high-performance bio-based hydraulic fluids from vegetable oils: Recent advances, current challenges, and future perspectives. Biomass Bioenergy. 2024 Apr 1;183:107160.
Tung SC, McMillan ML. Automotive tribology overview of current advances and challenges for the future. Tribol. Inter. 2004 Jul 1;37(7):517-36.
Shah MU, Reddy AV, Yusup S, Goto M, Moniruzzaman M. Ionic liquid-biosurfactant blends as effective dispersants for oil spills: Effect of carbon chain length and degree of saturation. Environ. Pollut. 2021 Sep 1;284:117119.
Kurre SK, Yadav J. A review on bio-based feedstock, synthesis, and chemical modification to enhance tribological properties of biolubricants. Ind. Crops Prod. 2023 Mar 1;193:116122.
Singh Y, Sharma A, Singh GK, Singla A, Singh NK. Optimization of performance and emission parameters of direct injection diesel engine fuelled with pongamia methyl esters-response surface methodology approach. Ind. Crops Prod. 2018 Dec 15;126:218-26.
Bilal S, Mohammed-Dabo IA, Nuhu M, Kasim SA, Almustapha IH, Yamusa YA. Production of biolubricant from Jatropha curcas seed oil. J. Chem. Eng. Mater. Sci. 2013 Sep 30;4(6):72-9.
Kania D, Yunus R, Omar R, Rashid SA, Jan BM. A review of biolubricants in drilling fluids: Recent research, performance, and applications. J. Pet. Sci. Eng. 2015; 135:177-84.
Kaunitz H, Johnson RE, Pegus L. Differences in effects of dietary fats on survival rate and development of neoplastic and other diseases in rats. J. Nutr. Sci. 1970; 10:61-70.
Katsiki N, Pérez-Martínez P, Lopez-Miranda J. Olive oil intake and cardiovascular disease evention:“Seek and you shall find”. Curr. Cardiol. Rep. 2021; 23(6):64.
Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol.. 2009; 100(1):261-8.
Fox NJ, Stachowiak GW. Vegetable oil-based lubricants—a review of oxidation. Tribol. Int. 2007; 40(7):1035-46.
Xiao Y, Xia W, Mason AS, Cao Z, Fan H, Zhang B, Zhang J, Ma Z, Peng M, Huang D. Genetic control of fatty acid composition in coconut (Cocos nucifera), African oil palm (Elaeis guineensis), and date palm (Phoenix dactylifera). Planta. 2019; 249:333-50.
Geng S, Yang S, Ning D, Li Y, Chen H. Analysis of the oil content and its fatty acid composition of fruits for introduced Olea europaea cultivars in Yunnan. J. Southw. For. Univ. 2018; 38(4):193-9.,
Hayes D, Angove MJ, Tucci J, Dennis C. Walnuts (Juglans regia) chemical composition and research in human health. Crit. Rev. food Sci. Nutr. 2016; 56(8):1231-41.
Llorent-Martínez EJ, Ortega-Barrales P, Fernández-de Córdova ML, Domínguez-Vidal AR, Ruiz-Medina A. Investigation by ICP-MS of trace element levels in vegetable edible oils produced in Spain. Food Chem. 2011; 127(3):1257-62.
Wei X, Shao X, Wei Y, Cheong L, Pan L, Tu K. Rapid detection of adulterated peony seed oil by electronic nose. J. food Sci. Technol. 2018; 55:2152-9.
Weinstock BA, Janni J, Hagen L, Wright S. Prediction of oil and oleic acid concentrations in individual corn (Zea mays L.) kernels using near-infrared reflectance hyperspectral imaging and multivariate analysis. J. Appl. Spectrosc. 2006; 60(1):9-16.
Wijewardana C, Reddy KR, Bellaloui N. Soybean seed physiology, quality, and chemical composition under soil moisture stress. Food Chem. 2019; 278:92-100.
Pospišil M, Škevin D, Mustapić Z, Neđeral Nakić S, Butorac J, Matijević D. Fatty Acid Composition in Oil of Recent Rapeseed Hybrids and 00 Cultivars. Agric. Conspec. Sci. 2007; 72(3):187-93.
Sui N, Wang Y, Liu S, Yang Z, Wang F, Wan S. Transcriptomic and physiological evidence for the relationship between unsaturated fatty acid and salt stress in peanut. Front. Plant Sci. 2018; 22;9:7.
Talpur MY, Kara H, Sherazi ST, Ayyildiz HF, Topkafa M, Arslan FN, Naz S, Durmaz F. Application of multivariate chemometric techniques for simultaneous determination of five parameters of cottonseed oil by single bounce attenuated total reflectance Fourier transform infrared spectroscopy. Talanta. 2014; 129:473-80.
Wang M, Zhou D, Ma L, Xu S, Wei S, Yang W, Wang Y, Du S. Analysis and evaluation of fatty acid composition in cottonseed oil. Food Sci. 2016; 36:136-41.
Nehdi IA, Sbihi HM, Tan CP, Rashid U, Al‐resayes SI. Chemical composition of date palm (Phoenix dactylifera L.) seed oil from six Saudi Arabian cultivars. J. food Sci. 2018;83(3):624-30.
Orsavova J, Misurcova L, Vavra Ambrozova J, Vicha R, Mlcek J. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J Mol. Sci. 2015; 16(6):12871-90.
Wei ZW, Wang JG. Study on the quality and bioactive substances of hot and cold-pressed sunflower oil. Cereals Oils. 2017; 30: 28–30
Hashempour-Baltork F, Torbati M, Azadmard-Damirchi S, Savage GP. Chemical, rheological and nutritional characteristics of sesame and olive oils blended with linseed oil. Advan. Pharm. Bull. 2018; 8(1):107.
Ghosh M, Upadhyay R, Mahato DK, Mishra HN. Kinetics of lipid oxidation in omega fatty acids rich blends of sunflower and sesame oils using Rancimat. Food chem. 2019; 272:471-7.
Joshi JR, Bhanderi KK, Patel JV. A review on bio-lubricants from non-edible oils-recent advances, chemical modifications and applications. J. Indian Chem. Soc. 2023; 100(1):100849.
Mahadi MA, Choudhury IA, Azuddin M, Yusoff N, Yazid AA, Norhafizan A. Vegetable oil-based lubrication in machining: issues and challenges. InIOP Conference Series: Mater. Sci. Eng. 2019; 530(1): 012003. IOP Publishing.
Liu Z, Sharma BK, Erhan SZ, Biswas A, Wang R, Schuman TP. Oxidation and low temperature stability of polymerized soybean oil-based lubricants. Thermochimica Acta. 2015; 601:9-16.
Dian NL, Hamid RA, Kanagaratnam S, Isa WA, Hassim NA, Ismail NH, Omar Z, Sahri MM. Palm oil and palm kernel oil: Versatile ingredients for food applications. J. Oil Palm Res. 2017; 29(4):487-511.
Erhan SZ, Sharma BK, Perez JM. Oxidation and low temperature stability of vegetable oil-based lubricants. Ind. Crops Prod. 2006; 24(3):292-9.
Nor NM, Salih N, Salimon J. Optimization of the ring opening of epoxidized palm oil using D-optimal design. Asian J. Chem. 2021; 33(1):67-75.
Salih N, Salimon J. A review on eco-friendly green biolubricants from renewable and sustainable plant oil sources. Biointerface Res. Appl. Chem. 2021; 11(5):13303-27.
Fadzel FM, Salimon J, Derawi D. Biolubricant production from palm stearin fatty acids and pentaerythritol. Malaysian J. Chem. 2019; 21(2):50-63.
Agrawal AJ, Karadbhajne VY, Agrawal PS, Arekar PS, Chakole NP. Synthesis of biolubricants from non edible oils. Int. Res. J Eng. Technol. 2017; 4(7):1753-7.
Zulkifli NW, Azman SS, Kalam MA, Masjuki HH, Yunus R, Gulzar M. Lubricity of bio-based lubricant derived from different chemically modified fatty acid methyl ester. Tribol. Int. 2016; 93:555-62.
Talib N, Goto M, Sasahara H, Rahim EA. The Performance of Modified Jatropha Oil as a Sustainable Metalworking Fluid when High Speed Rotary Machining. InProceedings of International Conference on Leading Edge Manufacturing in 21st century: LEM21 2015; 18: 1604-1.
Djomdi, Leku MT, Djoulde D, Delattre C, Michaud P. Purification and valorization of waste cotton seed oil as an alternative feedstock for biodiesel production. Bioengineering. 2020; 7(2):41.
Monteiro RR, dos Santos IA, Arcanjo MR, Cavalcante Jr CL, de Luna FM, Fernandez-Lafuente R, Vieira RS. Production of jet biofuels by catalytic hydroprocessing of esters and fatty acids: a review. Catalysts. 2022; 12(2):237.
Cecilia JA, Ballesteros Plata D, Alves Saboya RM, Tavares de Luna FM, Cavalcante Jr CL, Rodríguez-Castellón E. An overview of the biolubricant production process: Challenges and future perspectives. Processes. 2020; 8(3):257.
Schneider MP. Plant‐oil‐based lubricants and hydraulic fluids. J. Sci. Food Agric. 2006; 86(12):1769-80.
King JW, Holliday RL, List GR, Snyder JM. Hydrogenation of vegetable oils using mixtures of supercritical carbon dioxide and hydrogen. J. Am. Oil Chem. Soc. 2001; 78(2):107-13.
Salimon J, Salih N, Yousif E. Improvement of pour point and oxidative stability of synthetic ester basestocks for biolubricant applications. Arabian J. Chem. 2012; 5(2):193-200.
Hwang HS, Erhan SZ. Synthetic lubricant basestocks from epoxidized soybean oil and Guerbet alcohols. Ind. Crops Prod. 2006; 23(3):311-7.
Adhvaryu A, Erhan SZ. Epoxidized soybean oil as a potential source of high-temperature lubricants. Ind. Crops Prod. 2002 May 1;15(3):247-54.
Sharma BK, Stipanovic AJ. Development of a new oxidation stability test method for lubricating oils using high-pressure differential scanning calorimetry. Thermochimica Acta. 2003; 402(1-2):1-8.
Salimon J, Salih N. Preparation and characteristic of 9, 10-epoxyoleic acid α-hydroxy ester derivatives as biolubricant base oil. Eur J Sci Res. 2009; 31(2):265-72.
Cogliano T, Russo V, Eränen K, Tesser R, Di Serio M, Salmi T. Epoxidation of vegetable oils in continuous device: kinetics, mass transfer and reactor modelling. Chem. Eng. Sci. 2024; 294:120079.
Varghese TP, Gopalakrishnan J. Effect of peroxide concentration on the epoxidation of vegetable seed oil. Mater. Today: Proceedings. 2023.
Saurabh T, Patnaik M, Bhagt SL, Renge VC. Epoxidation of vegetable oils: a review. Int. J. Adv. Eng. Technol. 2011; 2(4):491-501.
Mungroo R, Pradhan NC, Goud VV, Dalai AK. Epoxidation of canola oil with hydrogen peroxide catalyzed by acidic ion exchange resin. J. Am. Oil Chem. Soc. 2008; 85(9):887-96.
Hájek M, Kocián D, Douda M. Statistical evaluation of the epoxidation of esters from vegetable oils and optimization of reaction conditions. Renew. Energy. 2023; 213:157-64.
Egbuna SO, Nwachukwu UJ, Agu CM, Asadu CO, Okolo B. Production of biolubricant samples from palm kernel oil using different chemical modification approaches. Eng. Reports. 2021; 3(11):12422.
Budiyati E, Budiman A. Kinetic study of epoxidation of Tung oil (Reutealis trisperma (Blanco) Airy Shaw) by peroxyacetic acid. InIOP Conference Series: Mater. Sci. Eng. 2020; 778 (1): 012048. IOP Publishing.
Yelwa JM, Abdullahi S. Epoxidation and hydroxylation of sunflower seed oil. Int. J. Sci. Res. Chem. 2019 Sep;4(5):1-7.
Derahman A, Abidin ZZ, Cardona F, Biak DR, Tahir PM, Abdan K, Liew KE. Epoxidation of jatropha methyl esters via acidic ion exchange resin: Optimization and characterization. Br. J. Chem. Eng. 2019; 36:959-68.
DEHONOR MARQUEZ ET, NIETO ALARCON JF, VIGUERAS SANTIAGO EN, HERNANDEZ LOPEZ SU. Effective and fast epoxidation reaction of linseed oil using 50 wt% hydrogen peroxyde. do Valle CP, Rodrigues JS, Fechine LM, Cunha AP, Malveira JQ, Luna FM, Ricardo NM. Chemical modification of Tilapia oil for biolubricant applications. J. Cleaner Prod. 2018; 191:158-66.
Vianello C, Piccolo D, Lorenzetti A, Salzano E, Maschio G. Study of soybean oil epoxidation: effects of sulfuric acid and the mixing program. Ind. Eng. Chem. Res. 2018; 57(34):11517-25.
Ashrafi J, Semnani A, Langeroodi HS, Shirani M. Direct acetylation of sunflower oil in the presence of boron trioxide catalyst and the adduct usage as the base stock and lubricant additive. Bull. Chem. Soc Ethiop. 2017; 31(1):39-49.
de Haro JC, Izarra I, Rodríguez JF, Pérez Á, Carmona M. Modelling the epoxidation reaction of grape seed oil by peracetic acid. J. Cleaner Prod. 2016; 138:70-6.
Richard AO, Ramli M. Newly developed epoxy-polyol and epoxy-polyurethane from renewable resources. Br. J. Appl. Sci. Technol. 2013; 3(4):984-93.
Hazmi AS, Aung MM, Abdullah LC, Salleh MZ, Mahmood MH. Producing Jatropha oil-based polyol via epoxidation and ring opening. Ind. Crops Prod. 2013; 50:563-7.
Arunjunai RM, Nicolai A, Gunter W, Andreas K. Macromol. Symp. 2012; 311: 18-27.
Salimon J, Salih N, Yousif E. Synthesis, characterization and physicochemical properties of oleic acid ether derivatives as biolubricant basestocks. J. oleo. sci. 2011;60(12):613-8.
Derawi D, Salimon J. Potential of Palm Olein as Green Lubricant Source: Lubrication Analysis and Chemical Characterization. Malaysian J. Anal. Sci. 2014; 18:245-50. .
Dinda S, Patwardhan AV, Goud VV, Pradhan NC. Epoxidation of cottonseed oil by catalysed by liquid aqueous hydrogen peroxide inorganic acids. Bioresour. Technol. 2008;99(9):3737-44.
Akintayo ET, Akintayo CO, Onipede A. Determination of the level of epoxidation of oils by 1H NMR technique.
Gerbase AE, Petzhold CL, Costa AP. Dynamic mechanical and thermal behavior of epoxy resins based on soybean oil. J. Am. Oil Chem. Soc. 2002; 79:797-802.
Hong LK, Yusop RM, Salih N, Salimon J. Optimization of the in situ epoxidation of linoleic acid of Jatropha curcas oil with performic acid. Malaysian J. Anal. Sci. 2015; 19(1):144-54.
Jalil MJ, Mohamed N, Jamaludin SK, Som AM, Mohamad Daud AR. Epoxidation of palm kernel oil-based crude oleic acid. Adv. Mater. Res. 2014; 906:125-30.
Agu CM, Menkiti MC, Nwabanne JT, Onukwuli OD. Comparative assessment of chemically modified Terminalia catappa L. kernel oil samples–a promising ecofriendly transformer fluid. Ind. Crops Prod. 2019; 140:111727.
Nie J, Shen J, Shim YY, Tse TJ, Reaney MJ. Synthesis of trimethylolpropane esters by base‐catalyzed transesterification. Eur. J. Lipid Sci. Technol. 2020; 122(3):1900207.
Parawira W. Biodiesel production from Jatropha curcas: A review. Sci. Res. Essays. 2010; 5(14):1796-808.
Salih N, Salimon J, Yousif E. The physicochemical and tribological properties of oleic acid based triester biolubricants. Ind Crops Prod. 2011; 34(1):1089-96.
Deshmukh P, Lovell M, Sawyer WG, Mobley A. On the friction and wear performance of boric acid lubricant combinations in extended duration operations. Wear. 2006; 260(11-12):1295-304.
Menezes PL, Lovell MR, Kabir MA, Higgs CF, Rohatgi PK. Green lubricants: role of additive size. Green Tribol.: Biomimetics, Energy. Conser. Sust. 2012:265-86.
Syahir AZ, Zulkifli NW, Masjuki HH, Kalam MA, Alabdulkarem A, Gulzar M, Khuong LS, Harith MH. A review on bio-based lubricants and their applications. J. Cleaner Prod. 2017; 168:997-1016.
Tufino JA, Reina IA, Garcia AM, Cedeno RE. Obtaining and characterization of biodiesel by transesterification from sunflower oil. Minerva. 2024; 5(14):19-28.
Efendi R, Muslimah S, Hikmawati M, Apriani S, Simbolon S, Setiawan W. Analisis Pengaruh Jumlah Variasi Katalis MeOH Pada Pembuatan Biodiesel Melalui Proses Transesterifikasi. Jurnal ELEMENTER (Elektro dan Mesin Terapan). 2023; 9(1):113-20.
Erhan SZ, Sharma BK, Liu Z, Adhvaryu A. Lubricant base stock potential of chemically modified vegetable oils. J. Agric. Food. Chem. 2008; 56(19):8919-25.
Ejikeme PM, Anyaogu ID, Ejikeme CL, Nwafor NP, Egbuonu CA, Ukogu K, Ibemesi JA. Catalysis in Biodiesel Production by Transesterification Processes‐An Insight. J. Chem. 2010; 7(4):1120-32.
Yunus R, Lye OT, Fakhru'l-Razi A, Basri S. A simple capillary column GC method for analysis of palm oil-based polyol esters. J. Am. Oil Chem. Soc. 2002; 79:1075-80.
Yunus RO, Fakhrul I-Razi A, Ooi TL, Iyuke SE, Idris A. Preparation and characterization of trimethylolpropane esters from palm kernel oil methyl esters. J. Oil Palm Res. 2003; 15(2):42-9.
Zulkifli NW, Kalam MA, Masjuki HH, Yunus R. Experimental analysis of tribological properties of biolubricant with nanoparticle additive. Procedia Eng. 2013; 68:152-7.
Jung S, Jung JM, Lee KH, Kwon EE. Biodiesels from non-catalytic transesterification of plant oils and their performances as aviation fuels. Energy Conversion and Management. 2021; 244:114479.97. Ho CK, McAuley KB, Peppley BA. Biolubricants through renewable hydrocarbons: A perspective for new opportunities. Renew. Sust. Energy. Rev. 2019; 113:109261.
McNutt J. Development of biolubricants from vegetable oils via chemical modification. J. Ind. Eng. Chem. 2016; 36:1-2.
Fallahasgari M, Barzegar F, Abolghasem D, Nayebzadeh K. An overview focusing on modification of margarine rheological and textural properties for improving physical quality. Eur. Food Res Technol. 2023; 249(9):2227-40.
Hassiotis CN, Ntana F, Lazari DM, Poulios S, Vlachonasios KE. Environmental and developmental factors affect essential oil production and quality of Lavandula angustifolia during flowering period. Ind. Crops Prod. 2014; 62:359-66.
Sánchez MA, Mazzieri VA, Vicerich MA, Vera CR, Pieck CL. Influence of the support material on the activity and selectivity of Ru–Sn–B catalysts for the selective hydrogenation of methyl oleate. Ind. Eng. Chem. Res. 2015; 54(27):6845-54.
Iuliano M, Cirillo C, Zarli A, Ciambelli P, Sarno M. Selective hydrogenation of vegetable oil over supported noble metal nanocatalyst. Eur. J. Lipid Sci. Technol.. 2024; 160:111974.
Salimon J, Salih N, Yousif E. Biolubricants: Raw materials, chemical modifications and environmental benefits. Eur. J. Lipid Sci. Technol. 2010; 112(5):519-30.
Giraldo L, Camargo G, Tirano J, Moreno-Pirajan JC. Synthesis of fatty alcohols from oil palm using a catalyst of Ni‐Cu supported onto zeolite. J. Chem. 2010; 7(4):1138-47.
Jia BB, Li TS, Liu XJ, Cong PH. Tribological behaviours of several polymer–polymer sliding combinations under dry friction and oil-lubricated conditions. Wear. 2007; 262(11-12):1353-9.
Belkacemi K, Boulmerka A, Arul J, Hamoudi S. Hydrogenation of vegetable oils with minimum trans and saturated fatty acid formation over a new generation of Pd-catalyst. Top. Catal. 2006; 37:113-20.
Nohair B, Especel C, Lafaye G, Marécot P, Barbier J. Palladium supported catalysts for the selective hydrogenation of sunflower oil. J. Mol. Catal. A: Chem. 2005; 229(1-2):117-26.
Choo HP, Liew KY, Liu H, Seng CE, Mahmood WK, Bettahar M. Activity and selectivity of noble metal colloids for the hydrogenation of polyunsaturated soybean oil. J. Mol. Catal. A: Chem. 2003; 191(1):113-21.
Ravasio N, Zaccheria F, Gargano M, Recchia S, Fusi A, Poli N, Psaro R. Environmental friendly lubricants through selective hydrogenation of rapeseed oil over supported copper catalysts. Appl. Catal., A: General. 2002; 233(1-2):1-6.
Jovanović, D.; Marković, B.; Stanković, M.; Rožić, L.; Novaković, T.; Vuković, Z.; Anić, M.; Petrović, S. Hem. Ind. 2002, 57, 147–151.
Veldsink JW. Selective hydrogenation of sunflower seed oil in a three-phase catalytic membrane reactor. J. Am. Oil Chem. Soc. 2001; 78:443-6.
Choo HP, Liew KY, Liu HF, Seng CE. Hydrogenation of palm olein catalyzed by polymer stabilized Pt colloids. J. Mol. Catal., A: Chemical. 2001; 165(1-2):127-34.
Melo Neta MM, Lima GR, Tavares PD, Figueredo ID, Rocha WD, Ribeiro Filho PR, Cavalcante Jr CL, Luna FM. Thermo-oxidative stability and tribological properties of biolubricants obtained from castor oil fatty acids and isoamyl alcohol. Lubricant. 2023; 11(11):490.
Thakur R, Sanap P, Patil S, Pratap A. Synthesis of 12-hydroxystearic estolide and its esters to study the effect of molecular structure on physicochemical properties. Ind. Crops Prod. 2023; 205:117435.
Sanap P, Sonawane D, Patil S, Pratap A. Optimization of oleic-estolide fatty acid synthesis using response surface methodology and artificial neural networks. Ind. Crops Prod. 2022; 188:115711.
Salimon J, Salih N, Yousif E. Synthesis, characterization and physicochemical properties of oleic acid ether derivatives as biolubricant basestocks. J. oleo. sci. 2011; 60(12):613-8.
Brimberg UI, Kamal‐Eldin A. On the kinetics of the autoxidation of fats: influence of pro‐oxidants, antioxidants and synergists. Eur. J. Lipid Sci. Technol. 2003; 105(2):83-91.
Cermak SC, Brandon KB, Isbell TA. Synthesis and physical properties of estolides from lesquerella and castor fatty acid esters. Ind. Crops Prod. 2006; 23(1):54-64.
Mariam NN, Hoong SS, Arniza MZ, Adnan S, Ismail TN, Yeong SK, Yusop MR. Optimisation of reaction parameters for the synthesis of solketal levulinate as potential biodiesel additive. J. Oil Palm Res. 2022; 34(3):524-34.
Cermak SC, Isbell TA. Biodegradable oleic estolide ester having saturated fatty acid end group useful as lubricant base stock.
Sarin R, Tuli DK, Prakash S, Swami KK, Bhatnagar AK. Phosphorus components in lubricants: Structure-activity relationship. Phosphorus, Sulfur, and Silicon and the Related Elements. 2002 ; 177(6-7):1763-6.
Castro W, Weller DE, Cheenkachorn K, Perez JM. The effect of chemical structure of base fluids on antiwear effectiveness of additives. Tribol. Int. 2005; 38(3):321-6.
Nicholls MA, Do T, Norton PR, Kasrai; M, Bancroft GM. Review of the lubrication of metallic surfaces by zinc dialkyl-dithiophosphates. Tribol. Int. 2005; 38(1):15-39.
Bernat S, Di Bartolomeo F, Armada S, Valaker E, Bonturi N, Koseto D, Haugen T, Kvernbråten AK, Stavárek P, Večeř M, Zelenka L. Exploring the potential of microbial biomass and microbial extracted oils in tribology: a sustainable frontier for environmentally acceptable lubricants. Green Chem. Letters and Rev. 2024; 17(1):2330644.
Khan S, Das P, Radwan AB, Thaher M, Abdulquadir M, Faisal M, Kasak P, Hawari AH, Al-Jabri H. Biolubricant Synthesis by Additization and Chemical Modification from Lipid-Rich Brackish Coelastrella sp. Using a Biorefinery Approach. ACS Sust. Chem. Eng. 2024; 12(19):7289-99.
Opia AC, Abdollah MF, Mamah SC, Hamid MK, Syahrullail S, Audu IA, Johnson C, Basiron J. Lubricity effectiveness of bio-lubricant modified with multi-wall carbon nanotube and organic polymer. Wear. 2023; 528:204974.
Ma J, Chen X, Li Y, Hao L, Li G. Bio-Based Antiwear/Extreme Pressure Additive Synthesized from Natural Renewable Cardanol. ACS Sust. Chem. Eng. 2023; 11(36):13398-406.
Najman MN, Kasrai M, Bancroft GM. Chemistry of antiwear films from ashless thiophosphate oil additives. Tribol. Letters. 2004; 17:217-29.
Li J, Zhang Y, Ren T, Liu W, Fu X. Tribological evaluation of S-(1H-benzotriazole-1-yl) methyl N, N-dialkyldithiocarbamates as additives in rapeseed oil. Wear. 2002; 253(7-8):720-4.
ASTM D. 2270-93: Standard practice for calculating viscosity index from kinematic viscosity at 40 and 100 C. ASTM, West Conshohocken, PA (USA). 2005.
Chan CH, Tang SW, Mohd NK, Lim WH, Yeong SK, Idris Z. Tribological behavior of biolubricant base stocks and additives. Renew. Sust. Energy Rev. 2018; 93:145-57.
Moreira DR, Chaves PO, Ferreira EN, Arruda TB, Rodrigues FE, Neto JF, Petzhold CL, Maier ME, Ricardo NM. Moringa polyesters as eco-friendly lubricants and its blends with naphthalenic lubricant. Ind. Crops Prod. 2020; 158:112937.
Zeng Q. The lubrication performance and viscosity behavior of castor oil under high temperature. Green Mater. 2021; 10(2):51-8.
Davoodi S, Al-Shargabi M, Wood DA, Rukavishnikov VS, Minaev KM. Thermally stable and salt-resistant synthetic polymers as drilling fluid additives for deployment in harsh sub-surface conditions: A review J. Mol. Liq. 2023; 371:121117.
Boyde S. Esters. InSynthetics, Mineral Oils, and Bio-Based Lubricants 2020 (pp. 45-76). CRC Press.
Sousa AM, Ribeiro TP, Pereira MJ, Matos HA. Review of the Economic and Environmental Impacts of Producing Waxy Crude Oils. Energies. 2022; 16(1):120.
Astm D. 97, D 97 Test Method for Pour Point of Petroleum Products. United States: Am. Soc. Testing Mater. 2005.
Ahmed MS, Nair KP, Tirth V, Elkhaleefa A, Rehan M. Tribological evaluation of date seed oil and castor oil blends with halloysite nanotube additives as environment friendly bio-lubricants. Biomass Convers.Biorefin. 2021; 21:1-0.
Tonkonogov BP, Dorogochinskaya VA, Bagdasarov LN, Mozhaiskaya EV. Development of a Proximate IR Spectrometric Method for the Determination of Base Oil Viscosity, Viscosity Index, and Pour Point. Chem. Technol. Fuels and Oils. 2016; 52:76-84.
Stipanovic AJ. Lubricant Base Fluids. In Significance of tests for petroleum products 2003; 119-139)
ASTM International. Standard test method for flash and fire points by Cleveland open cup tester. ASTM Int.; 2012.
Fadzel FM, Salimon J, Derawi D. Biolubricant production from palm stearin fatty acids and pentaerythritol. Malaysian J. Chem. 2019; 21(2):50-63.
Japir AA, Salimon J, Derawi D, Yahaya BH, Bahadi M, Al-Shujaʼa S, Yusop MR. A highly efficient separation and physicochemical characteristics of saturated fatty acids from crude palm oil fatty acids mixture using methanol crystallisation method. OCL. 2018; 25(2): A203.
Khan MB, Zahid R, Kazim AH, Javed K. Synthesis and use of TMP ester biolubricant derived from cottonseed oil in SI engine. Ind. Lubr. and Tribol. 2021; 73(7):1084-90.
Sukirno S, Farhandika L. Synthesis and characterization of ethylene glycol ester from spent bleaching earth oil and ethylene glycol as hydraulic lubricants. In AIP Conference Proceedings 2020 (Vol. 2255, No. 1). AIP Publishing.
Raof NA, Hamid HA, Mohamad Aziz NA, Yunus R. Prospects of plant-based trimethylolpropane esters in the biolubricant formulation for various applications: a review. Front. Mech. Eng. 2022; 8:833438.
Folayan AJ, Anawe PA, Aladejare AE, Ayeni AO. Experimental investigation of the effect of fatty acids configuration, chain length, branching and degree of unsaturation on biodiesel fuel properties obtained from lauric oils, high-oleic and high-linoleic vegetable oil biomass. Energy Reports. 2019; 5:793-806.
Merrill LI, Pike OA, Ogden LV, Dunn ML. Oxidative stability of conventional and high‐oleic vegetable oils with added antioxidants. J. Am. Oil Chem. Soc. 2008; 85(8):771-6.
Márquez-Ruiz G, Garcés R, León-Camacho M, Mancha M. Thermoxidative stability of triacylglycerols from mutant sunflower seeds. J. Am. Oil Chem. Soc. 1999; 76:1169-74.
Sarker MI, Mainali K, Sharma BK, Yadav MP, Ngo H, Ashby RD. Synthesized biolubricants from naturally derived oleic acid: Oxidative stability and cold flow performance. Ind. Crops and Prod. 2023; 204:117315.
Xie M, Xu D, Zhang C. Tribological properties and thermal-stability of epoxide-functionalized biolubricant derived from the abandon aerial part of Codonopsis pilosula. Tribol. Int. 2023; 185:108537.
Lee MB, Balan EA, Lee CT. ENHANCING TRIMETHYLOLPROPANE TRIOLEATE BIOLUBRICANT WITH METHYL LAURATE ADDITIVE. J. Trans. Syst. Eng. 2023; 30: 8-13.
Sadiq IO, Suhaimi MA, Sharif S, Mohd Yusof N, Hisam MJ. Enhanced performance of bio-lubricant properties with nano-additives for sustainable lubrication. Ind. Lubr. and Tribol. 2022; 74(9):995-1006.
Johnson M, Miller M. Eco-friendly fluids for the lubricants industry. Tribology & lubrication technology. 2010 Oct 1;66(10):28-34. 125.
GERBIG, Y., AHMED, S.I.U, GERBIG, F.A, HAEFKE, H., Suitability of Vegetable oils as Industrial Lubricants. J Synth Lubr. 2004, 177-91.
Gerbig Y, Ahmed SU, Gerbig FA, Haefke H. Suitability of vegetable oils as industrial lubricants. J. Synth. Lubr. 2004; 21(3):177-91.
Wahyuningsih TD, Kurniawan YS. Synthesis of dioxo-dioxane and dioxo-dioxepane ethyl oleate derivatives as bio-lubricant base stocks. Ind. J. Chem. 2020; 20(3):503-9.
Vemullapalli V, Lakkoju B. A potential pentaerythritol-based bio-lubricants from 10-undecylenic acid: its physico-chemical assessment. J. Indian Chem. Soc. 2023; 100(6):101014.
Vázquez-Villegas PT, Hernández-Cruz MD, Lam-Gutiérrez A, Rodríguez-Hernández L, Valdespino-León M, Zenteno-Rojas A, Meza-Gordillo R, Cruz-Salomón A, Serrano-Ramírez RD, Cruz-Rodríguez RI. Toxicity Assessment of a Biolubricant Exposed to Eisenia fetida. Processes. 2023;
(10):3020.
Musa BA, Shehu P, Muhammad BA. IMPACTS AND MANAGEMENT OF VEHICULAR USED LUBRICATING OIL: A THREAT TO ENVIRONMENTAL SUSTAINABILITY IN KADUNA METROPOLIS, NIGERIA.
Montiel MC, Gómez M, Murcia MD, Ortega-Requena S, Máximo F, Bastida J. Sustainable Biocatalytic Synthesis of a Second-Generation Biolubricant. Sustainability. 2024; 16(4):1615.
Rizwan M. Degradation of Bioplastics under the Influence of Several Environmental conditions. Pakis. J. Sci. 2022;74(4).
Attia NK, El-Mekkawi SA, Elardy OA, Abdelkader EA. Chemical and rheological assessment of produced biolubricants from different vegetable oils. Fuel. 2020; 271:117578.
Battersby NS, Morgan P. A note on the use of the CEC L-33-A-93 test to predict the potential biodegradation of mineral oil based lubricants in soil. Chemosphere. 1997; 35(8):1773-9.
Perin G, Álvaro G, Westphal E, Viana LH, Jacob RG, Lenardão EJ, D’Oca MG. Transesterification of castor oil assisted by microwave irradiation. Fuel. 2008; 87(12):2838-41.
Sanjurjo C, Rodríguez E, Viesca JL, Battez AH. Influence of molecular structure on the physicochemical and tribological properties of biolubricants: a review. Lubricants. 2023; 11(9):380.
Hamnas A, Unnikrishnan G. Bio-lubricants from vegetable oils: Characterization, modifications, applications and challenges–Review. Renew. Sust. Energy Rev. 2023;182:113413.
Dykha O, Hetman M, Staryi A, Kalaczynski T. Review of aspects of processing and use of waste cooking oils as effective lubricants. Probl. Tribol. 2023.
Nagendramma P, Kaul S, Bisht RP. Study of synthesised ecofriendly and biodegradable esters: fire resistance and lubricating properties. Lubr. Sci. 2010; 22(3):103-10.
Reeves CJ, Siddaiah A, Menezes PL. A review on the science and technology of natural and synthetic biolubricants. J. Bio Tribol.Corros. 2017; 3:1-27.
Willing A. Lubricants based on renewable resources–an environmentally compatible alternative to mineral oil products. Chemosphere. 2001; 43(1):89-98.
Orsavova J, Misurcova L, Vavra Ambrozova J, Vicha R, Mlcek J. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J Mol. sci. 2015; 16(6):12871-90.
Momchilova S, Antonova D, Marekov I, Kuleva L, Nikolova‐Damyanova B, Jham G. Fatty acids, triacylglycerols, and sterols in neem oil (Azadirachta indica A. Juss) as determined by a combination of chromatographic and spectral techniques. J. liq. Chromatogr. Related Technol. 2007; 30(1):11-
Völtz M, Yates NC, Gegner E. Biodegradability of lubricant base stocks and fully formulated products. J. Synth. Lubr. 1995; 12(3):215-30.
Bhaumik S, Paleu V, Pathak R, Maggirwar R, Katiyar JK, Sharma AK. Tribological investigation of r-GO additived biodegradable cashew nut shells liquid as an alternative industry lubricant. Tribol. Int.. 2019; 135:500-9.
Aravind A, Joy ML, Nair KP. Lubricant properties of biodegradable rubber tree seed (Hevea brasiliensis Muell. Arg) oil. Ind. Crops Prod. 2015; 74:14-9.
Emmanuel OA, Kessington OO, Mudiakeoghene OJ. Biodegradation of vegetable oils: A review. Sci. Res. Essays. 2009;4(6):543-8.
Cecutti C, Agius D. Ecotoxicity and biodegradability in soil and aqueous media of lubricants used in forestry applications. Bioresour. Technol.
; 99(17):8492-6..
Darminesh SP, Sidik NA, Najafi G, Mamat R, Ken TL, Asako Y. Recent development on biodegradable nanolubricant: A review. Int. Commun. Heat Mass Trans. 2017; 86:159-65.
Gunaseelan VN. Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy. 1997; 13(1-2):83-114.
Oulego P, Faes J, González R, Viesca JL, Blanco D, Battez AH. Relationships between the physical properties and biodegradability and bacteria toxicity of fatty acid-based ionic liquids. J. Mol. Liq. 2019; 292:111451.
Garcés R, Martínez-Force E, Salas JJ. Vegetable oil basestocks for lubricants. Grasas y aceites. 2011; 62(1):21-8.
Jaina AK, Suhanea A. Capability of biolubricants as alternative lubricant in industrial and maintenance applications. Int. J. Curr. Eng. Technol. 2013;3(1):179-83.
Soni S, Agarwal M. Lubricants from renewable energy sources–a review. Green Chem. letters rev. 2014; 7(4):359-82.
Salimon J, Abdullah BM, Yusop RM, Salih N. Synthesis, reactivity and application studies for different biolubricants. Chem. Cent. J. 2014; 8:1-1.
Lawal SA, Choudhury IA, Nukman Y. Application of vegetable oil-based metalworking fluids in machining ferrous metals—a review. Int. J. Mach. Tools Manuf. 2012; 52(1):1-2.
Pawel, Rozga., Abderrahmane, Beroual., Piotr, Przybyłek., Maciej, Jaroszewski., Konrad, Strzelecki. A Review on Synthetic Ester Liquids for Transformer Applications. Energies. 2020; 13(23):6429-. doi: 10.3390/EN13236429
Masood H, Yunus R, Choong TS, Rashid U, Yap YH. Synthesis and characterization of calcium methoxide as heterogeneous catalyst for trimethylolpropane esters conversion reaction. Appl. Catal., A: General. 2012; 425:184-90.
Talib N, Sasahara H, Rahim EA. Evaluation of modified jatropha-based oil with hexagonal boron nitride particle as a biolubricant in orthogonal cutting process. Int. J. Adv. Manuf. Technol. 2017; 92:371-91.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tropical Journal of Phytochemistry and Pharmaceutical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.