<i>In vitro</i> Investigation and GC-MS Analysis of the Chemical Constituents in the Fraction of Hexane Leaf Extract of <i>Tapinanthus bangwensis</i> (Engl. and K. Krause) Loranthaceae

http://www.doi.org/10.26538/tjpps/v3i1.5

Authors

  • Godwin O. Ihegboro Department of Biochemistry and Forensic Science, Faculty of Science, Nigeria Police Academy, Wudil, Kano, Nigeria.
  • Chimaobi J. Ononamadu Department of Biochemistry and Forensic Science, Faculty of Science, Nigeria Police Academy, Wudil, Kano, Nigeria.
  • Tajudeen A. Owolarafe Department of Biochemistry and Forensic Science, Faculty of Science, Nigeria Police Academy, Wudil, Kano, Nigeria.
  • Olayinka Onifade Department of Biochemistry, Faculty of Clinical Sciences, University of Lagos, Nigeria
  • Jideoliseh J. Udeh Department of Biochemistry and Forensic Science, Faculty of Science, Nigeria Police Academy, Wudil, Kano, Nigeria.
  • Afusat O. Saliu Department of Biochemistry and Forensic Science, Faculty of Science, Nigeria Police Academy, Wudil, Kano, Nigeria.
  • Daniel D. Abolaji Department of Biochemistry and Forensic Science, Faculty of Science, Nigeria Police Academy, Wudil, Kano, Nigeria.
  • Yerima M. Ibrahim Department of Biochemistry and Forensic Science, Faculty of Science, Nigeria Police Academy, Wudil, Kano, Nigeria.

Keywords:

Tapinanthus bangwensis, Anti-diabetic, Antioxidant, Fourier transition infrared, Gas chromatography-mass spectroscopy

Abstract

The exploration of medicinal plants as potential alternative therapeutic model comes from the quality content of its chemical compounds that exacerbate remarkable activity, nevertheless, there is the need for further exploit. This study investigated the in vitro antioxidant and antidiabetic potential of the fraction (HEX-ETACF or CF 2) of hexane leaf extract of Tapinanthus bangwensis, but importantly analyzed the likely chemical compounds present in the sample. The study used GC-MS (gas chromatography-mass spectroscopy) machine and spectrophotometer to elucidate the possible compounds and estimate the antioxidant and antidiabetic property respectively. The fraction had significant amount of alkaloids content, while phenolics content appeared higher than the flavonoids content The antioxidant results had the activity of lipid peroxy, 2,2-diphenyl-1-hydrazyl and nitrite radicals significantly inhibited compared to the ferric radicals. Furthermore, the result showed that the fraction inhibited α-amylase's metabolic activity higher than α-glucosidase. The Fourier transition infrared (FTIR) chromatogram had ten peaks, indicated the fraction contains complex molecules that bears carbonyl, methyl, carboxyl and aromatic groups respectively. The GC-MS chromatogram revealed twenty-one peaks, such that butyl-9-octadecenoic acid (8.01%) and nonahexacontanoic acid (0.05%) had the highest and lowest percentage areas (% area). Another GC-MS chromatogram had twenty-seven peaks, with squalene (peak 23; 37.29%) and 1,2-benzenedicarboxylic acid, buty-2-ethylhexyl ester (peak 27; 19.87%) been significantly abundant, suggested the fraction was rich in phenolics and phthalates. Our findings revealed that the compounds demonstrate beneficial effects as antioxidant and antidiabetic agents.

         Views | PDF Download | EPUB Download:430 / 286 / 0 / 34

References

Williams JT, Ahmad Z. Priorities for Medicinal Plants Research and Development in Pakistan; Medicinal and Aromatic Plants Program in Asia (MAP PA). 1999. New Delhi, India.

Zahra W, Rai SN, Birla H, Singh SS, Rathore AS, Dilnashin H, Keswani C, Singh SP. Economic Importance of Medicinal Plants in Asian Countries. In Bioeconomy for Sustainable Development; Springer: Singapore. 2020; 359–377.

Jamshidi-Kia F, Lorigooini Z, Amini-Khoei H. Medicinal plants: Past history and future perspective. J. Herbmed Pharmacol. 2018; 7: 1–7.

Silverman RB, Holladay MW. The Organic Chemistry of Drug Design and Drug Action, 2014; Academic Press, Cambridge, MA, USA.

Newman DJ, Cragg GM, Snader KM. The influence of natural products upon drug discovery. Nat. Prod. Rep. 2000; 17: 215–234.

Adomako-Bonsu AG, Chan SLF, Pratten M, Fry JR. Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: Importance of physico-chemical characteristics. Toxicol. Vitr. 2017; 40: 248–255.

Behravan E, Razavi BM, Hosseinzadeh H. Review of Plants and Their Constituents in the Therapy of Cerebral Ischemia. Phytother. Res. 2014; 28:1265–1274.

Josephine EO, Antoinette N, Chinwe OJ, Chinwe OAN. “Herbal medicines in African traditional medicine,” Herbal Med. 2019; 10:190–212.

Akur M, Singh K, Khedkar R. “Phytochemicals: extraction process, safety assessment, toxicological evaluation and regulatory issues,” Funal. Preserv. Prop. Phytochem. 2020; 11: 341–361.

Tabe NN, Ushie OA, Jones BB, Kendenson AC, Muktar M, Ojeka CU. Phytochemical Analysis of methanolic Extract of Mistletoe Leaf. Int. J. Adv. Res. Chem. Sci. 2019; 5(7): 7–11.

Njoya HK, Chukwu EO, Okwuonu CU, Erifeta GO. Phytochemical, proximate and elemental analysis of the African mistletoe (Tapinanthus preussii) crude aqueous and ethanolic leaf extracts. J Med Plants Stud. 2018; 6(6):162–170.

Adesina SK, Illoh HC, Johnny II, Jacobs IE. African Mistletoes (Loranthaceae); Ethnopharmacology, Chemistry and Medicinal Values: An Update. Afr. J. Trad. Complement Altern Med. 2013; 10(3):161–170.

Ekhaise FO, Ofoezie VG, Enobakhare DA. Antibacterial Properties and Preliminary Phytochemical Analysis of Methanolic Extract of Mistletoe. Br. J. Pure. Appl. Sci. 2010; 3(2): 65–68.

Saleh IA, Maigandi SA, Hudu MI, Abubakar MI, Shehu AU. Uses and Chemical Composition of Mistletoe (Viscum album) Obtained from Different Species of Trees. Dutse J. Agric Food Secur. 2015; 2(1): 8–12.

Atewolara-Odule OC, Ogunmoye AO, Yeyisola RT, Sanusi AS. Antioxidant activity of some secondary metabolites from Tapinanthus bangwensis (Engl. and K. Krause) [Loranthaceae] grown in Nigeria. Scientific Afr. 2020; 8(2020): e00348.

Ihegboro GO, Alhassan AJ, Ononamadu CJ, Sule MS. Identification of bioactive compounds in ethylacetate fraction of Tapinanthus bangwensis leaves that ameliorate CCl4- induced hepatotoxicity in Wistar rats. Toxicol. Res Appl. 2020; 4: 1-10.

Ihegboro GO, Ononamadu CJ, Owolarafe TA, Iko S. Screening for toxicological and anti-diabetic potential of n-hexane extract of Tapinanthus bangwensis leaves. Toxicol. Res. Appl. 2020; 4:1-10. https://doi.org/10.1177/23978447320972042.

Ihegboro GO. Alhassan AJ, Owolarafe TA, Ononamadu CJ, Salawu K, Afor E, Zaharaddeen IK, Edonyabo MD. Nutmeg Toxicity: Ameliorative effect of aqueous extract of Guiera senegalensis in Experimental rat model. Ife J. Sci. 2019; 21(2): 277-285.

Nayan RB, Pankal BN, Acharya RN, Shukla VJ. “In vitro antioxidant activity of 'hydro alcoholic extract from the fruit pulp of Cassia Estula Linn,” Ayu. 2013; 34 (2): 209–214.

Zhu K, Zhou H, Qian H. “Antioxidant and free radical scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase,” Process Biochem. 2006; 41(6):1296–1302.

Fadzai B, Elaine C, Stanley M. “Evaluation of nitrite radical scavenging properties of selected Zimbabwean plant extracts and their phytoconstituents,” J. Food Process. 2014; 7 pages. Article ID 918018.

Ihegboro GO, Ononamadu CJ, Owolarafe TA, Kolawole R, Fadilu M, Aminu AM, Afor E, Ihegboro SN, Adebayo M, Abdullahi Y. Cytotoxicity Evaluation and the Free Radical Scavenging Activity of the Root Extracts of Calotropis procera. Trop J Nat Prod Res. 2022; 6(12): 2081-2086. http://www.doi.org/10.26538/tjnpr/v6i12.30

Goboza M, Meyer M, Aboua YG, Oguntibeju OO. In vitro antidiabetic and antioxidant effects of different extracts of Catharanthus roseus and its indole alkaloids Vindoline. Molecules. 2020; 25: 5546. https://doi.org/10.3390/molecules25235546

Satapute P, Paidi MK, Kurjogi M, Jogaiah S. “Physiological adaptation and spectral annotation of Arsenic and Cadmium heavy metal-resistant and susceptible strain Pseudomonas taiwanensis,” Environ Poll. 2019; 251:555–563.

Konappa N, Udayashankar AC, Krishnamurthy S, Pradeep CK, Chowdappa S, Jogaiah S. “GC–MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins,” Scientific Rep. 2020; 10 (1), Article ID 16438.

Tsegu K, Rajalakshmanan E, Yadessa M, Aman D. In Vitro Antibacterial and Antioxidant Activities and Molecular Docking Analysis of Phytochemicals from Cadia purpurea Root. J. Trop. Med. 2022; 4190166. Doi: 10.1155/2022/4190166.

Egharevba E, Chukwuemeke-Nwani P, Bolanle IO, Erharuyi O, Eboh U, Okoye E, Falodun A. Evaluation of the Antioxidant and Hypoglycaemic potentials of the leaf extracts of Stachytarphyta jamaicensis (Verbenaceae). Trop J. Nat Prod Res. 2019; 3(5): 170-174.

Ngozi PO, Falodun A, Oluseyi D. Evaluation of the Antioxidant activity of root extract of pepper fruit (Dementia tripetela) and its potential for the inhibition of lipid peroxidation. Afr J. Trad Complement Altern Med. 2014; 11(3): 221-227. Doi: 10.4314/ajtcam.vlli3.31.

Hassan M, Bala SZ, Gadanya AM. Anticonvulsant effect of flavonoid-rich fraction of Ficus platyphylla stem bark on pentylenetetrazole-induced seizure in mice. Nig. J. Basic clin Sci. 2022; 19(1): 2022.

Francis OA, Arinzechukwu I, Peter AO, Oghenetaga JA. Evaluation of chemical composition, in vitro antioxidant and antidiabetic activities of solvent extracts of Irvingia gabonensis leaves. Heliyon. 2022; 8(2022): e09922.

Chuanhai T, Wenxiu H, Sijie T, Ling M, Zhihai H, Xiao X, Xiudong X, Fidelis A, Corlade de MM, Evandro AN, Sergio ALM, Alberto O. Chemical constituents and Evaluation of Antimicrobial and cytotoxic activities of Kielmeyera coriacea, Martsebv and Zuce Essential oils. Evid-based complement Altern. Med. 2015; 2015: 9pages. https://dx.doi.org/10.1155/2015/842047.

Nanditato ABD, Oktoani R, Ragadhita R. How to read and interpret FTIR spectroscope of organic material. Indonesian J. Sci. Technol. 2019; 4(1): 97-118.

Fulwah YA, Fadilah SA, Amany ZM, Nida NF, Rihaf A, Ebtesam SA, Ibrahim AA. Chemical composition and antimicrobial, antioxidant and anti-inflammatory activities of Lepidium sativum seed oil. Saudi. J. Biol. Sci. 2019; 26(5):1089-1092. Doi: 10.1016/j.sjbs.2018.05.007.

Rajeswari G, Murugan M, Mohan V.R. GC-MS analysis of bioactive compounds of Hugonia mystax L. bark (Linaceae). J. pharmaceutic. Biomed Sci. 2013; 29(29): 818-824.

Reddy GJ, Reddy KB, Reddy GVS. GC-MS analysis and in vitro antidiabetic activity of bioactive fractions of Feronia elephanium fruit. Int. J. Pharm. Sci. Res. 2020; 11(5):2415-2424. Doi:10.13040/IJPSR.0975-8232.11(5).2415-2424

Mirmiranpour H, Rabizadeh S, Mansournia MA, Salehi SS, Esteghamati A, Nakhjarani M. Protective effects of palmitoleic, oleic and vacenic acids on structure-function of main Antioxidant Enzymes: Catalase, superoxide dismutase and Glutathione peroxidase in the hyperglycemic environment: An in Vitro study. Austin Biochem. 2018; 3(1): 1017.

Semwal P, Painuli S, Badoni H. Screening of phytoconstituents and antibacterial activity of leaves and bark of Quercus leucotrichoohora A. carmus from Uttarakhand Himalaya. Clin. Phytosci. 2018; 4: 30. https://doi.org/10.1186/540816-018-0090-y.

Madinat H, Sunday ZB, Musa B, Peter MW, Ramlatu MA, Muhammad AU, Priscilla K. LC-MS and GC-MS Profiling of Different fractions of Ficus platyphylla stem bark Ethanolic extract. J. Anal methds chem. 2022; 2022:11pages. Article ID: 6349332. https://doi.org/10.1155/2022/6349332.

Shubhangi NI. Phytochemical analysis of leaf extract of Ocimum americanum L by GCMS method. World scientific News. 2016; 37(2016): 76-87

Lazano-Grande MA, Gorinsteins S, Espitia-Rangel E, Davila-Ortiz G, Martinez-Ayala AL. Plant sources, extraction methods, and uses of squalene. Int. J. Agronomy. 2018; 2018: 1-13.

Suriyavathana M, Subha P, Senthllkum S, Sumathi S, Kavitha RM, Ramaligan K. Phytochemical profile of Erythrina variegate by using High performance liquid chromatography and gas chromatography-mass spectroscopy Analyses. J. Acupuncture. Mend. stud. 2016; 9(4): 207-212.

Swamy MK, Arumugam G, Kaur R, Ghasemzadeh A, Yusoff MM, Simmiah UR. GC-MS based metabolite profiling, antioxidant and antimicrobial properties of different solvent extracts of Malaysian Plectrianyhus amboinicus leaves. Evidence-based complement Altern Med. 2017; 2017: 1-10

Viraj C, Sakshi C, Tanmay P. Studies on GCMS profiling of some seaweeds of Mahim beach District, Palghar, Maharashtra using various solvents. Int. J. pharmaceutic Sci. Res. 2021; 12(3): 1644-1650

Nonglang FP, Khale A, Wankhar W, Bhan S. Pharmacognostic evaluation of Eranthemum indicum extracts for its in-vitro antioxidant activity, acute toxicology, and investigation of potent bioactive phytocompounds using HPTLC and GCMS. Beni-Suef Uni. J. Basic Appl. Sci, 2022; 11, Article number: 129. https://doi.org/10.1016/j.bjbas.2022.08.001

Matthew O, James A, Akogwu I, Fabunmi T, Godwin I, Ebun B, Mohammed Z, Dorathy O. Evaluation of in vitro antioxidant, phytochemical and GC-MS analysis of aqueous extract of Solanum Dasyphyllum fruits. J. Med Biol. Sci Res, 2021;7(3):10-14. https://doi.org/10.36630/jmbsr_21004

Ferdosi MFH, Khan IH, Javaid A, Saeed HM, Butt I. GC-MS analysis profile and bioactive components of flowers of Bergenia ciliata, a weed of rock crevices. J. Weed Sci Res. 2021; 27(4): 527-535. https://doi.org/10.28941/pjwsr.v27i4.1012

Alabi K, Oyeku T. The chemical constituents extractable from teak tree (Tectona grandis Linn) obtained from Fountain University, Osogbo. Nig J. Basic Appl Sci, 2017; 25(1):73-80. doi:10.4314/njbas. v25i1.1080

Manuela L, Paola P, Marco T, James AM, Maurizio S, Monica W. Phytol and Heptacosane and possible tools to overcome multidrug resistance in an in vitro model of Acute myeloid leukemia. Pharmaceut (Basel). 2022; 15(3): 356. Doi.10.3390/ph1503356.

Kawuri R, Darmayasa IBG. Bioactive compound of Streptomyces capoamus as biocontrol of bacterial wilt disease on banana plant. IOP Conference Series: Earth Environ Sci, 2019; 347: 012054. https://doi.org/10.1088/1755-1315/347/1/012054

Yuvaraj K, Muduganti RKP, Prabhu K, Lakshimi RS, Sampadm S, Sathish MK, Vijayalakshimi V. The gas chromatography-mass spectroscopy study of one medicinal plant, Stachytarpheta indica. Drug invention Today. 2019; 12(8): 1605-1609.

Stepfanie S, Sophia OE, Faralmaz A, Naw ME, Deepall S, Patrick NO. Wound healing and antibacterial activities of 2-pentadecanone in streptozotocin-induced Type 2 diabetic rats. Pharmacognosy Mag. 2019; 15(62): 71-77. Doi.10.4103/pm.pm 444-18.

Jemal K. Molecular docking studies of phytochemicals of Allophylus serratus against Cyclooxygenase-2 enzyme. BioRxiv. 2019; 2019: 10pages https://doi.org/10.1101/866152.

Elavarasi S, Revathi, G, Saravanan, K. Isolation, identification and molecular docking of antidiabetic compounds of Cyathea

narigirensis (Holttum), first edition. Drug development for cancer and diabetes. Apple Academic press, Taylor and Francis group, United Kingdom. 2020, 11 pages

Published

2024-02-05

How to Cite

Ihegboro, G. O., Ononamadu, C. J., Owolarafe, T. A., Onifade, O., Udeh, J. J., Saliu, A. O., … Ibrahim, Y. M. (2024). <i>In vitro</i> Investigation and GC-MS Analysis of the Chemical Constituents in the Fraction of Hexane Leaf Extract of <i>Tapinanthus bangwensis</i> (Engl. and K. Krause) Loranthaceae: http://www.doi.org/10.26538/tjpps/v3i1.5. Tropical Journal of Phytochemistry and Pharmaceutical Sciences, 3(1), 143–152. Retrieved from https://tjpps.org/index.php/home/article/view/39