Phytochemical Investigation of <i>Aristolochias ringens</i> (Vahl.) n-hexane root extract using GC-MS and FTIR
DOI:
https://doi.org/10.26538/tjpps/v4i3.2Keywords:
Fourier Transform Infrared Spectroscopy, Gas Chromatography-Mass Spectrometry, phytochemical contents, n-hexane extract, Aristolochia ringensAbstract
Aristolochia ringens (Vahl.) has been featured in traditional medicinal practices to manage several diseases. This work aims to investigate the phytochemical contents of Aristolochia ringens n-hexane root extract and the functional groups present using Gas Chromatography-Mass Spectrometry (GC-MS) and Fourier Transform Infrared (FTIR) Spectroscopy methods of analysis and also to discuss the major and minor compounds detected with their biological activities. The plant material was extracted by macerating in n-hexane for 72 h. The extract was concentrated to dryness using a rotary evaporator and then screened for secondary metabolites. The phytochemical contents and FTIR were investigated using a GCMS-QP2010SE Shimadzu (Japan) fitted with an MS (Model EI) and an Agilent FTIR spectrophotometer (USA). Sixty-two compounds were detected by the GC-MS and identified using the NIST 11 library. The compounds consist of terpenes (28.97%), steroids and D-modified steroid (17.54%), cannabinoids (23.56%), esters (14.78%), epoxides (3.74%), alkanol, alkynol, and phenolic (3.00%), organosilicone (5.43%), alkanones and nitroalkanone (0.41%), hydrocarbons and chlorohydrocarbon (1.98%), pyrazine ester (0.11%), dioxocin (0.47%), and fatty acid (0.01%). Three cannabinoids are detected, and the most abundant of compounds and cannabinoid is cannabinol. FTIR detected OH-stretch (3327 cm⁻¹), C-H-stretch (2921 cm⁻¹ and 2854 cm⁻¹), C=O stretch (1711 cm⁻¹), C=C (1640 cm⁻¹ and 1462 cm⁻¹), C-O stretch for ether and epoxide (1380 cm⁻¹), and C-O stretch for alkanol (1171 cm⁻¹ and 1074 cm⁻¹). This study revealed the rich phytochemical contents of the n-hexane Aristolochia ringens extract, with their diverse medicinal properties. These results further explained the ethnomedicinal uses of the plant.
References
Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med. 2013; 10 (5):210-229. Doi: 10.4314/ajtcam.v10i5.2.
Tapsell LC, Hemphill I, Cobiac L, Patch CS, Sullivan DR, Fenech M, Roodenrys S, Keogh JB, Clifton PM, Williams PG, Fazio VA, Inge KE. Health benefits of herbs and spices: the past, the present, the future. Med J Aust. 2006; 185(S4): S1-S24.Doi: 10.5694/j.1326-5377.2006.tb00548.x.
Liu RH. Health-promoting components of fruits and vegetables in the diet. Adv Nutr. 2013; 4(3): 384S-392S. Doi: 10.3945/an.112.003517.
Toroglu S. In-vitro antimicrobial activity and synergistic/antagonistic effect of interactions between antibiotics and some spice essential oils. J Environ Biol. 2011; 32(1): 23-29.
Kubmarawa D, Ajoku GA, Enwerem NM, Okorie DA. Preliminary phytochemical and antimicrobial screening of 50 medicinal plants from Niger. J. Biotechnol. 2007; 6:1690-1696.
Yu JQ, Liao ZX, Cai XQ, Lei JC, Zou GL. Composition, antimicrobial activity and cytotoxicity of essential oils from Aristolochia mollissima. Environ Toxicol Pharmacol. 2007; 23(2):162-167. Doi: 10.1016/j.etap.2006.08.004.
Minari JB, Idris MA. Forensic and Pharmacognostic Study of Aristolochia ringens Stem. J. Forensic Res. 2014; 6:1-4. Doi: 10.4172/2157-7145.1000257.
8 Ruth AF, Olaide AO, Oluwatoyin SM. The aqueous root extract of Aristolochia ringens (Vahl.) Aristolochiaceae inhibits chemically induced inflammation in rodents. Pak J Pharm Sci. 2014; 27(6):1885-1889.
Olabanji S, Omobuwajo O, Ceccato D, Adebajo A, Buoso M, Moschini G. Accelerator-based analytical technique in the study of some anti-diabetic medicinal plants of Nigeria. Nucl. Instrum. Methods Phys. Res., B 2008; 266(10): 2387-2390. https://doi.org/10.1016/ j.nimb .2008 .03.016.
Sulyman AO, Akolade JO, Sabiu SA, Aladodo RA, Muritala HF. Antidiabetic potentials of ethanolic extract of Aristolochia ringens (Vahl.) roots. J Ethnopharmacol. 2016; 182:122-128. https://doi.org/10.1016/j.jep.2016.02.002.
Sonibare MA, Gbile ZO. Ethnobotanical survey of anti-asthmatic plants in South Western Nigeria. Afr J Tradit Complement Altern Med. 2008; 5(4):340-345. Doi:10.4314/ ajtcam. v5i4.31288.
Adeyemi OO, Aigbe FR, Badru OA. The antidiarrhoeal activity of the aqueous root extract of Aristolochia ringens (Vahl.) Aristolochiaceae. Nig Q J Hosp Med. 2012; 22(1):29-33.
Owolabi MS, Omowonuola A, Lawal OA, Labunmi L, Dosoky NS, Collins J, Ogungbe IV, Setzer WN. Phytochemical and bioactivity screening of six Nigerian medicinal plants. J Pharmacogn Phytochem, 2017; 6:1430-1437.
Mazadu EA, Misau MS, Gwallameji LB. Phytochemical screening and antimicrobial activity of some medicinal trees grown in Bauchi state, northeastern, Nigeria. J Pharmacogn Phytochem. 2018; 7:3503-3507.
Borokini TI, Ighere DA, Clement M, Ajiboye TO, Alowonle AA. Ethnobiological Survey of Traditional Medicine Practice for the Treatment of Piles and Diabetes mellitus in Oyo State. J. Med. Plants Stud. 2013; 1: 30-40.
Aigbe FR, Sofidiya OM, James AB, Sowemimo AA, Akindere OK, Aliu MO, Dosunmu AA, Chijioke MC, Adeyemi OO. Evaluation of the toxicity potential of acute and sub-acute exposure to the aqueous root extract of Aristolochia ringens Vahl. (Aristolochiaceae). J Ethnopharmacol. 2019; 244:112150. Doi: 10.1016/j.jep.2019.112150.
Odugbemi T. Textbook of Medicinal Plants from Nigeria. University of Lagos Press; 2008. 550 p.
Lerma-Herrera MA, Beiza-Granados L, Ochoa-Zarzosa A, López-Meza JE, Navarro-Santos P, Herrera-Bucio R, Aviña-Verduzco J, García-Gutiérrez HA. Biological Activities of Organic Extracts of the Genus Aristolochia: A Review from 2005 to 2021. Molecules. 2022; 27(12): 3937. Doi: 10.3390/molecules27123937.
Akindele AJ, Wani Z, Mahajan G, Sharma S, Aigbe FR, Satti N, Adeyemi OO, Mondhe DM. Anticancer activity of Aristolochia ringens Vahl. (Aristolochiaceae). J Tradit Complement Med. 2014;5(1):35-41. Doi: 10.1016/j.jtcme.2014.05.001.
Akoro SM, Ogundare OC, Omotayo MA, Durosimi D, Awofeso DO. Investigation of the phytochemical contents, mineral contents, free radical scavenging, and alpha-amylase inhibitory activities of Aristolochia ringens (vahl.) root. JRRS. 2022; 9: 33-39. Doi: 10.36108/jrrslasu /2202.90.0150.
Arannilewa ST. A simple laboratory prescreen for plants with grain protectant effects against the maize weevil; Sitophilus zeamais (Mots) (Coleoptera: Curculionidae). Agric J. 2007; 2:736-739. https://doi.org/aj.2007.736.739.
Stashenko EE, Andrés Ordóñez S, Marín NA, Martínez JR. Determination of the volatile and semi-volatile secondary metabolites and aristolochic acids in Aristolochia ringens Vahl. J Chromatogr Sci. 2009; 47(9):817-821. Doi: 10.1093/chromsci/47.9.817.
Grimm F, Fets L, Anastasiou D. Gas Chromatography Coupled to Mass Spectrometry (GC-MS) to Study Metabolism in Cultured Cells. Adv Exp Med Biol. 2016; 899:59-88. Doi: 10.1007/978-3-319-26666-4_5.
Ihegboro GO, Ononamadu CJ, Owolarafe TA, Onifade O, Udeh JJ, Saliu AO, Abolaji DD, Ibrahim YM. Title: In vitro Investigation and GC MS Analysis of the Chemical Constituents in the Fraction of Hexane Leaf Extract of Tapinanthus bangwensis (Engl. and K. Krause) Loranthaceae. Trop J Phytochem Pharm. Sci. 2024; 3(1):143-152. http://www.doi.org/10. 26538 /tjpps/v3i1.5.
Olaoye AB, Idowu KS, Awonegan AP. GC-MS Fingerprinting of Methanolic Extract of Moringa oleifera Stem, Leaf and Root. Trop J Phytochem Pharm. Sci. 2024; 3(4):254-260. https://www.tjpps.org/index.php/home/article/view/78.
Akoro S, Ogundare O, Oyedola A. Comparative GC-MS Analysis, Antioxidant and cytotoxic activities of Garcinia kola Heckel seed and stem-bark n-hexane extract. J. Med Herb. 2023; 14(2): 35-43. Doi: 10.30495/medherb.2023. 707916.
Skoog DA, Hanlan J, West DM. Principles of instrumental analysis. (7th ed.). Cengage; 2016. 303-566 p.
Madurapperumage A, Johnson N, Thavarajah P, Tang L, Thavarajah D. Fourier‐transform infrared spectroscopy (FTIR) as a high‐throughput phenotyping tool for quantifying protein quality in pulse crops. Plant Phenome j. 2022; 5(1): e20047. https://doi.org/10.1002/ppj2.20047.
Ijoma I, Ishmael V, Ajiwe V, Ndubuisi J. (2022). Evidence-based preferential in vitro antisickling mechanism of three native Nigerian plants used in the management of sickle cell disease. MJBMB. 2022; 3: 9-17.
Bolade OP, Akinsiku AA, Adeyemi AO, Williams AB, Benson NU. Dataset on phytochemical screening, FTIR and GC–MS characterisation of Azadirachta indica and Cymbopogon citratus as reducing and stabilising agents for nanoparticles synthesis. Data Brief. 2018; 20:917-926. https://doi.org/10.1016/j.dib.2018.08.133.
Teoh ES. Secondary Metabolites of Plants. In: Medicinal Orchids of Asia, Springer, Cham. 2016; 59–73.
Twaij BM, Hasan MN. Bioactive Secondary Metabolites from Plant Sources: Types, Synthesis, and Their Therapeutic Uses. Int. J. Plant Biol. 2022; 13(1):4-14. https://doi.org/10. 3390/ijpb13010003.
Ogunlesi M, Okiei W, Osibote E. Analysis of the essential oil from the leaves of Sesamum radiatum, a potential medication for male infertility factor, by gas chromatography-mass spectrometry. Afr. J. Biotechnol. 2010; 9:1060-1067. Doi: 10.5897/AJBO9.941.
Cox-Georgian D, Ramadoss N, Dona C, Basu C. Therapeutic and Medicinal Uses of Terpenes. Medicinal Plants. 2019; 333–359. Doi: 10.1007/978-3-030-31269-5_15.
Abyadeh M, Gupta V, Paulo JA, Gupta V, Chitranshi N, Godinez A, Saks D, Hasan M, Amirkhani A, McKay M, Salekdeh GH, Haynes PA, Graham SL, Mirzaei M. A Proteomic View of Cellular and Molecular Effects of Cannabis. Biomolecules. 2021; 11(10):1411. Doi: 10.3390/ biom11101411.
Nusantara GB, Rahmania T. Identification of Δ9-tetrahydrocannabinol compounds in Cannabis sativa using gas chromatography-mass spectrometry. Pharm Educ. 2024; 24:43-49. https://doi.org/10.46542/pe.2024.246.4349.
Blaskovich MAT, Kavanagh AM, Elliott AG, Zhang B, Ramu S, Amado M, Lowe GJ, Hinton AO, Pham DMT, Zuegg J, Beare N, Quach D, Sharp MD, Pogliano J, Rogers AP, Lyras D, Tan L, West NP, Crawford DW, Peterson ML, Callahan M, Thurn M. The antimicrobial potential of cannabidiol. Commun Biol. 2021; 4(1):7. Doi: 10.1038/s42003-020-01530-y.
Hussain SA, Zhou R, Jacobson C, Weng J, Cheng E, Lay J, Hung P, Lerner JT, Sankar R. Perceived efficacy of cannabidiol-enriched cannabis extracts for treatment of pediatric epilepsy: A potential role for infantile spasms and Lennox-Gastaut syndrome. Epilepsy behave. 2015; 47:138–141. Doi: 10.1016/j.yebeh.2015.04.009.
Kis B, Ifrim FC, Buda V, Avram S, Pavel IZ, Antal D, Paunescu V, Dehelean CA, Ardelean F, Diaconeasa Z, Soica C, Danciu C. Cannabidiol-from Plant to Human Body: A Promising Bioactive Molecule with Multi-Target Effects in Cancer. Int J Mol Sci. 2019; 20(23):5905. https://doi.org/10.3390/ijms20235905.
Wang X, Zhang H, Liu Y, Xu Y, Yang B, Li H, Chen L. An overview on synthetic and biological activities of cannabidiol (CBD) and its derivatives. Bioorg Chem. 2023; 140:106810. Doi: 10.1016/j.bioorg.2023.106810.
Śledziński P, Zeyland J, Słomski R, Nowak A. The current state and future perspectives of cannabinoids in cancer biology. Cancer Med. 2018;7(3):765-775. Doi: 10.1002/cam4.1312.
Atalay S, Jarocka-Karpowicz I, Skrzydlewska E. Antioxidative and Anti-Inflammatory Properties of Cannabidiol. Antioxidants (Basel). 2019; 9(1):21. Doi: 10.3390/antiox9010021.
Robson PJ. Therapeutic potential of cannabinoid medicines. Drug Test. Anal. 2014; 6: 24–30. https://doi.org/10.1002/dta.1529.
Shah SA, Gupta AS, Kumar P. Emerging role of cannabinoids and synthetic cannabinoid receptor 1/cannabinoid receptor 2 receptor agonists in cancer treatment and chemotherapy-associated cancer management. J Cancer Res Ther. 2021;17(1):1-9. Doi: 10.4103/jcrt.JCRT_488 _18.
De Vries M, van Rijckevorsel DC, Wilder-Smith OH, van Goor H. Dronabinol and chronic pain: importance of mechanistic considerations. Expert Opin Pharmacother. 2014;15(11):1525-1534. Doi: 10.1517/14656566.2014.918102.
Carley DW, Prasad B, Reid KJ, Malkani R, Attarian H, Abbott SM, Vern B, Xie H, Yuan C, Zee PC. Pharmacotherapy of Apnea by Cannabimimetic Enhancement, the PACE Clinical Trial: Effects of Dronabinol in Obstructive Sleep Apnea. Sleep, 2018; 41(1): zsx184. https://doi.org/ 10.1093/sleep/zsx184.
Sampson PB. Phytocannabinoid Pharmacology: Medicinal Properties of Cannabis sativa Constituents Aside from the "Big Two". J Nat Prod. 2021; 84 (1):142-160. Doi: 10.1021/acs.jnatprod.0c00965.
Kuzminac IZ, Bekić SS, Ćelić AS, Jakimov DS, Sakač MN. Antitumor potential of novel 5α,6β-dibromo steroidal D-homo lactone. Steroids, 2022; 188:109118. https://doi.org/10.1016/ j.steroids.2022.109118.
Manni A, Pearson OH, Marshall JS, Arafah BM. Sequential endocrine therapy and chemotherapy in metastatic breast cancer: effects on survival. Breast Cancer Res Treat. 1981;1(2):97-103. https://doi.org/10.1007/BF01805861.
Lenko HL, Leisti S, Perheentupa J. The efficacy of growth hormone in different types of growth failure. An analysis of 101 cases. Eur J Pediatr. 1982;138 (3):241-249. Doi: 10.1007/BF00441210.
Tebbaa M, Hakmaoui AE, Benharref A, Akssira M. Short and efficient hemisynthesis of α-eudesmol and cryptomeridiol Tetrahedron Lett., 2011; 52 (29): 3769-3771. https://doi.org/ 10.1016/ j. tetlet.2011.05.064.
Chen J, Ge S, Liu Z, Zhang D, Peng W. GC-MS explores health care components in the extract of Pterocarpus Macarocarpus Kurz. Saudi J Biol Sci. 2018; 25 (6):1196-1201. Doi: 10.1016/j.sjbs.2017.12.013.
Hamza YG, Danyaya AI, Lawal M. An In silico Analysis of Some Bioactive Compounds of Psidium guajava against Target Proteins of Vibrio cholerae. Asian J. Biochem. Gen. Mol. Biol. 2020;6 (4):14-20. Doi:10.9734/ajbgmb/2020/v6i430158
Madhubala M, Santhi G. Phytochemical and GC-MS analysis on leaves of selected medicinal plants in Boraginaceae family Cordia dichotoma L. Pramana Res. J. 2019; 9: 2249–2276.
Cabeza M, Bratoeff E, Flores E, Ramírez E, Calleros J, Montes D, Quiroz A, Heuze I. 5 Alpha-reductase inhibitory and antiandrogenic activities of novel steroids in hamster seminal vesicles. Chem Pharm Bull (Tokyo). 2002; 50 (11):1447-1452. Doi: 10.1248/cpb.50.1447.
Bains W, Tacke R. Silicon chemistry as a novel source of chemical diversity in drug design. Curr Opin Drug Discov Devel. 2003; 6 (4):526-43.
Röshe L, John P, Reitmeier R. "Organic Silicon Compounds" Ullmann’s Encyclopedia of Industrial Chemistry. John Wiley and Sons: San Francisco, 2003
Mills JS, Showell GA. Exploitation of silicon medicinal chemistry in drug discovery. Expert Opin Investig Drugs. 2004;13(9):1149-1457. Doi: 10.1517/13543784.13.9.1149.
Gadhe CG, Cho SJ. Importance of Silicon Atom in the Drug Design Process. J. of the Chosun Natural Science. 2012; 5 (4): 229 – 232. Doi: 10.13160/ricns.2012.5.4.229.
Caputi L, Aprea E. Use of terpenoids as natural flavouring compounds in food industry. Recent Pat Food Nutr Agric. 2011; 3(1):9-16. Doi: 10.2174/2212798411103010009
Hirota R, Nakamura H, Bhatti SA, Ngatu NR, Muzembo BA, Dumavibhat N, Eitoku M, Sawamura M, Suganuma N. Limonene inhalation reduces allergic airway inflammation in Dermatophagoides farinae-treated mice. Inhal Toxicol. 2012; 24(6):373-381. Doi: 10.3109/08958378.2012.675528.
Eddin LB, Jha NK, Meeran MFN, Kesari KK, Beiram R, Ojha S. Neuroprotective Potential of Limonene and Limonene Containing Natural Products. Molecules. 2021; 26(15):4535. Doi: 10.3390/molecules26154535.
Chen X, Ding Y, Guan H, Zhou C, He X, Shao Y, Wang Y, Wang N, Li B, Lv G, Chen S. The Pharmacological Effects and Potential Applications of Limonene from Citrus Plants: A Review. Nat. Prod. Commun. 2024; 19. (5). https://doi.org/10.1177/1934578X241254229.
Scuteri D, Rombolà L, Crudo M, Watanabe C, Mizoguchi H, Sakurada S, Hamamura K, Sakurada T, Tonin P, Corasaniti MT, Bagetta G. Preclinical Characterization of Antinociceptive Effect of Bergamot Essential Oil and of Its Fractions for Rational Translation in Complementary Therapy. Pharmaceutics. 2022;14(2):312. Doi: 10.3390/pharmaceutics14020312.
Sánchez-Velandia JE, Valdivieso LM, Martínez O F, Mejía SM, Villa AL, Wärnå J, Murzin DY. Synthesis of trans-pinocarveol from oxidation of β-pinene using multifunctional heterogeneous catalysts. Mol. Catal. 2023; 541:113104. https://doi.org/10.1016/j.mcat.2023. 113104.
Ambrosio CMS, Diaz-Arenas GL, Agudelo LPA, Stashenko E, Contreras-Castillo CJ, da Gloria EM. Chemical Composition and Antibacterial and Antioxidant Activity of a Citrus Essential Oil and Its Fractions. Molecules. 2021; 26(10):2888. Doi: 10.3390/ molecules 26102888.
Bhatia SP, McGinty D, Letizia CS, Api AM. Fragrance material review on p-mentha-1,8-dien-7-ol. Food Chem Toxicol. 2008;46 Suppl 11: S197-200. Doi: 10.1016/j.fct.2008.06.071.
Lapczynski A, Bhatia SP, Letizia CS, Api AM. Fragrance material review on ocimenol. Food Chem Toxicol. 2008;46 Suppl 11: S251-S252. https://doi.org/10.1016/j.fct.2008.06. 064
69.Youssef AMM, Maaty DAM, Al-Saraireh YM. Phytochemical Analysis and Profiling of Antioxidants and Anticancer Compounds from Tephrosia purpurea (L.) subsp. apollinea Family Fabaceae. Molecules (Basel, Switzerland), 2023; 28(9): 3939. Doi: 10.3390/molecules28093939.
Dos Santos E, Radai JAS, do Nascimento KF, Formagio ASN, de Matos Balsalobre N, Ziff EB, Castelon Konkiewitz E, Kassuya CAL. Contribution of spathulenol to the anti-nociceptive effects of Psidium guineense. Nutr Neurosci. 2022;25(4):812-822. Doi: 10.1080/1028415X. 2020.1815330. 25(4):812-822.
Durán-Peña MJ, Botubol Ares JM, Hanson JR, Collado IG, Hernández-Galán R. Biological activity of natural sesquiterpenoids containing a gem-dimethylcyclopropane unit. Nat Prod Rep. 2015;32(8):1236-1248. Doi: 10.1039/c5np00024f.
Karakaya S, Yilmaz SV, Özdemir Ö, Koca M, Pınar NM, Demirci B, Yıldırım K, Sytar O, Turkez H, Baser KHC. A caryophyllene oxide and other potential anticholinesterase and anticancer agent in Salvia verticillata subsp. amasiaca (Freyn & Bornm.) Bornm. (Lamiaceae). J. Essent. Oil Res. 2020; 32(6): 512-525. Doi:10.1080/10412905.2020.1813212.
Martins A, Hajdú Z, Vasas A, Csupor-Löffler B, Molnár J, Hohmann J. Spathulenol inhibit the human ABCB1 efflux pump. Planta Med. 2010;76(12): P608. Doi:10.1055/s-0030-1264906.
Murugesan A, Kari S, Shrestha A, Assoah B, Saravanan KM, Murugesan M, Thiyagarajan R, Candeias NR, Kandhavelu M. Methanodibenzo[b,f][1,5]dioxocins as Novel Glutaminase Inhibitor with Anti-Glioblastoma Potential. Cancers (Basel). 2023;15(4):1010. Doi: 10.3390/cancers15041010.
Jiang Q, Christen S, Shigenaga MK, Ames BN. gamma-tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am J Clin Nutr. 2001;74(6):714-722. Doi: 10.1093/ajcn/74.6.714.
Gille L, Monzote L, Stamberg W, Staniek K. Toxicity of ascaridole from Chenopodium ambrosioides in mammalian mitochondria. BMC Pharmacol. 2010; 10: A10. Doi: 10.1186/1471-2210-10-S1-A10.
Yang D, Michel L, Chaumont JP, Millet-Clerc J. Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia. 1999;148(2):79-82. Doi: 10.1023/a:1007178924408.
Handa RJ, Sharma D, Uht RM. A Role for the Androgen Metabolite, 5alpha Androstane 3beta, 17beta Diol (3β-Diol) in the Regulation of the Hypothalamo-Pituitary–Adrenal Axis. Front. Endocrinol., 2011; 2:14098. https://doi.org/10.3389/fendo.2011.00065
Mariotti AJ. (2016). Steroid Hormones of Reproduction and Sexual Development. Pharmacology and Therapeutics for Dentistry (7th Ed.). 2016; 446-456. https://doi.org/10.1016/B978-0-323-39307-2.00032-1
Shelley J, Moir HJ, Petróczi A. The Use and Misuse of Testosterone in Sport: The Challenges and Opportunities in Doping Control. In: Bagchi D, Nair S, Sen C. (Eds.). Nutrition and Enhanced Sports Performance: Muscle building, endurance, and strength. (2nd ed.). Academic Press Ltd-Elsevier Science Ltd; 2019. 571-580 p. https://doi.org/10.1016/B978-0-12-813922-6.00048-5
Nandiyanto A. B. D., Oktiani R., Ragadhita R. (2019). How to read and interpret FT-IR spectroscopy of organic material. Indo. J. Sci. Technol. 4, 97–118. Doi: 10.17509/ijost. v4i1.15806.
Kassem A, Abbas L, Coutinho O, Opara S, Najaf H, Kasperek D, Pokhrel K, Li X, Tiquia-Arashiro S. Applications of Fourier Transform-Infrared spectroscopy in microbial cell biology and environmental microbiology: advances, challenges, and future perspectives. Front Microbiol. 2023 Nov 21; 14:1304081. doi: 10.3389/fmicb.2023.1304081. Erratum in: Front Microbiol. 2023; 14:1342406. doi: 10.3389/fmicb.2023.1342406.
Smith BC. Alcohols—The Rest of the Story. Spectroscopy. 2017; 32 (4): 19-27.
Pakkirisamy M, Kalakandan SK, Ravichandran K. Phytochemical Screening, GC-MS, FT-IR Analysis of Methanolic Extract of Curcuma caesia Roxb (Black Turmeric). Pharmacog J. 2017; 9 (6):952-956. Doi: 10.5530/pj.2017.6.149.

Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tropical Journal of Phytochemistry and Pharmaceutical Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.