Evaluation of Memory Enhancing Potential of <i>Centella lujica</i> Supplement and Its Underlying Mechanisms of Action in mice model of Stress
DOI:
https://doi.org/10.26538/tjpps/v4i3.1Keywords:
Centella lujica, Inflammation, Oxidative stress, MemoryAbstract
Chronic stress is known to impair cognitive functions, particularly memory. This study investigated the neuroprotective and memory-enhancing effects of Centella lujica (CL) in a mouse model of chronic unpredictable mild stress (CUMS). Sixty adult male mice were divided into five groups: group 1 served as the control, groups 2 - 5 were exposed to CUMS, groups 3 and 4 were pretreated with CL at 25 mg/kg and 50 mg/kg orally, respectively, while group five was pretreated with donepezil (1 mg/kg, i.p.). Behavioral assessment using the novel object recognition test and biochemical analyses of the oxidative stress biomarkers, as well as the histology of the prefrontal cortex and hippocampus were done. Results showed that Centella lujica significantly enhanced memory performance (0.4120 ± 0.01715, 0.1920 ± 0.01281, 0.4240±0.02600, 0.4740±0.02293, and 0.3120±0.01985) and increased reduced glutathione levels (26.52±1.059, 17.8±1.499, 25.77±1.636, 29.7±1.535, and 24.82±1.631 in the prefrontal cortex; 18.8±0.6092, 13.21±0.6095, 18.38±0.773, 19.78±0.6057, and 17.31±0.5267 in the hippocampus), indicating the potential of Centella lujica in reducing oxidative stress. Histological evaluation confirmed improved structural integrity in the prefrontal cortex and hippocampus. These findings suggest that Centella lujica counteracts stress-induced oxidative damage and promotes neuroplasticity, offering potential therapeutic benefits for stress-related cognitive impairments. Further studies are needed to explore its clinical applications.
References
Taborsky B, English S, Fawcett TW, Kuijper B, Leimar O, McNamara JM, Ruuskanen S, Sandi C. Towards an Evolutionary Theory of Stress Responses. Trends Ecol Evol. 2021; 36:39-48. doi:10.1016/j.tree.2020.09.003.
Salehi B, Martorell M, Arbiser JL, Sureda A, Martins N, Maurya PK, Sharifi-Rad M, Kumar P, Sharifi-Rad J. Antioxidants: Positive or Negative Actors? Biomolecules. 2018; 8:124-130. doi:10.3390/biom8040124.
Panossian A. Adaptogens in Mental and Behavioral Disorders. Psychiatr Clin North Am. 2013; 36:49-64.
Henckens MJ, Hermans AG, Pu EJ, Joels ZM, Fernandez G. Stressed Memories: How Acute Stress Affects Memory Formation in Humans. J Neurosci. 2009; 29:10111-10119.
Murphy MP, Bayir H, Belousov V, Chang CJ, Davies KJA, Davies MJ, Dick TP, Finkel T, Forman HJ, Janssen-Heininger Y, Gems D. Guidelines for Measuring Reactive Oxygen Species and Oxidative Damage in Cells and in Vivo. Nat Metab. 2022; 4:651-662.
Eduviere AT, Umukoro S, Aderibigbe AO, Ajayi AM, Adewole FA. Methyl Jasmonate Enhances Memory Performance Through Inhibition of Oxidative Stress and Acetylcholinesterase Activity in Mice. Life Sci. 2015; 132:20-26.
Gould E, Tanapat P, McEwen BS, Flügge G, Fuchs E. Proliferation of Granule Cell Precursors in the Dentate Gyrus of Adult Monkeys Is Diminished by Stress. Proc Natl Acad Sci. 1998; 95:3168-3171.
Sapolsky RM and Pulsinelli WA. Glucocorticoids Potentiate Ischemic Injury to Neurons: Therapeutic Implications. Science. 1985; 229:1397-1400.
Olufunmilayo EO, Gerke-Duncan MB, Holsinger RMD. Oxidative Stress and Antioxidants in Neurodegenerative Disorders. Antioxidants. 2023; 12:517-522. doi:10.3390/antiox12020517.
Potter PE, Rauschkolb PK, Pandya Y, Sue LI, Sabbagh MN, Walker DG, Beach TG. Pre-and Post-synaptic Cortical Cholinergic Deficits Are Proportional to Amyloid Plaque Presence and Density at Preclinical Stages of Alzheimer’s Disease. Acta Neuropathol. 2011; 122:49-60.
Arfin S, Jha NK, Jha SK, Kesari KK, Ruokolainen J, Roychoudhury S, Rathi B, Kumar D. Oxidative Stress in Cancer Cell Metabolism. Antioxidants. 2021; 10:642.
Hao Y, Zhu YJ, Zou S, Zhou P, Hu YW, Zhao QX, Gu LN, Zhang HZ, Wang Z, Li J. Metabolic Syndrome and Psoriasis: Mechanisms and Future Directions. Front Immunol. 2021; 12:711060.
Jia KK, Zheng YJ, Zhang YX, Liu JH, Jiao RQ, Pan Y. Banxia-houpu Decoction Restores Glucose Intolerance in CUMS Rats Through Improvement of Insulin Signaling and Suppression of NLRP3 Inflammasome Activation in Liver and Brain. J Ethnopharmacol. 2017; 219:29.
Jagadeesan S, Chiroma SM, Baharuldin MT, Taib CN, Amom Z, Adenan MI, Moklas MA. Centella asiatica Prevents Chronic Unpredictable Mild Stress-Induced Behavioral Changes in Rats. Biomed Res Ther. 2019; 6:3233-3243.
Antoniuk S, Bijata M, Ponimaskin E, Wlodarczyk J. Chronic Unpredictable Mild Stress for Modeling Depression in Rodents: Meta-Analysis of Model Reliability. Neurosci Biobehav Rev. 2019; 99:101-116. doi:10.1016/j.neubiorev.2018.12.002.
Markov K, Manji H, Lu B. New Insights into BDNF Function in Depression and Anxiety. Nat Neurosci. 2022; 10:1089-1093.
Algamai M, Pearson A, Hahn-Townsend C, Burca I. Repeated Unpredictable Stress and Social Isolation Induce Chronic HPA Axis Dysfunction and Persistent Abnormal Fear Memory. Prog Neuropsychopharmacol Biol Psychiatry. 2020; 23:410-417. doi:10.1016/j.pnpbp.2020.110035.
Zahara K, Bibi Y, Tabassum S. Clinical and Therapeutic Benefits of Centella asiatica. Pure Appl Biol. 2014; 3:152-159.
Marisa R, Assessor D, Calapai G. Assessment Report on Centella asiatica (L.) Urban, Herba. European Medicines Agency. Available From:. https://www.ema.europa.eu/en/documents/herbal-report/assessment-report-centella-asiatica-l-urb-herba-revision-1_en.pdf. Accessed December 8, 2023.
Singh S, Gautam A, Sharma A, Batra A. Centella asiatica (L.): A Plant with Immense Medicinal Potential But Threatened. Int J Pharm Sci Rev Res. 2010; 4:9-17.
Ben-Azu BB, Nwoke EE, Aderibigbe OA, Omogbiya IA, Ajayi AM, Olonode ET, Umukoro S, Iwalewa EO. Possible Neuroprotective Mechanisms of Action Involved in the Neurobehavioral Property of Naringin in Mice. Biomed Pharmacother. 2019; 109:536-546. doi:10.1016/j.biopha.2018.10.055.
Eduviere AT, Enaohwo MT, Awhin PE, Otomewo OL, Iwalio O. Gotu Kola Supplement Ameliorates Stress-Induced Liver Injury in Mice. Trop J Nat Prod Res. 2022; 6(6):969-973. doi.org/10.26538/tjnpr/v6i6.25
Willner P. The Chronic Mild Stress (CMS) Model of Depression: History, Evaluation and Usage. Neurobiol Stress. 2017; 6:78-93. doi:10.1016/j.ynstr.2016.08.002.
Olayinka NJ, Akawa OB, Ogbu EK, Eduviere AT, Ozolua IR, Solima M. Apigenin Attenuates Depressive-Like Behavior via Modulating Monoamine Oxidase A Enzyme Activity in Chronically Stressed Mice. Curr Res Pharmacol Drug Discov. 2023; 5:100161.
Wopara I, Modo EU, Adebayo OG, Mobisson SK, Nwigwe JO, Ogbu PI, Nwankwo VU, Ejeawa CU. Anxiogenic and Memory Impairment Effect of Food Color Exposure: Upregulation of Oxido-Neuroinflammatory Markers and Acetyl-Cholinestrase Activity in the Prefrontal Cortex and Hippocampus. Heliyon. 2021;7(3):e06378.
Moron MS, Depierre JW, Mannervik B. Levels of Glutathione, Glutathione Reductase and Glutathione S-Transferase Activities in Rat Lung and Liver. Biochim Biophys Acta Gen Subj. 1979; 582:67-78.
Ádám-Vizi V and Seregi A. Receptor Independent Stimulatory Effect of Noradrenaline on Na, K-ATPase in Rat Brain Homogenate: Role of Lipid Peroxidation. Biochem Pharmacol. 1982; 31:2231-2236.
Mythri RB, Venkateshappa C, Harish G, Mahadevan A, Muthane UB, Yasha TC, Srinivas Bharath MM, Shankar SK. Evaluation of Markers of Oxidative Stress, Antioxidant Function and Astrocytic Proliferation in the Striatum and Frontal Cortex of Parkinson’s Disease Brains. Neurochem Res. 2011; 36:1452-1463.
Amin SN, Younan SM, Youssef MF, Rashed LA, Mohamady IA. Histological and Functional Study on Hippocampal Formation of Normal and Diabetic Rats. F1000Res. 2013; 2:151-159. doi:10.12688/f1000research.2-151.v1.
Umukoro S, Aluko OM, Eduviere AT, Owoeye O. Evaluation of Adaptogenic-Like Property of Methyl Jasmonate in Mice Exposed to Unpredictable Chronic Mild Stress. Brain Res Bull. 2016; 121:105-114. doi:10.1016/j.brainresbull.2015.11.016.
Aluko OM and Umukoro S. Methyl Jasmonate Reverses Chronic Stress-Induced Memory Dysfunctions Through Modulation of Monoaminergic Neurotransmission, Antioxidant Defense System, and Nrf2 Expressions. Naunyn Schmiedebergs Arch Pharmacol. 2020; 393:2339-2353. doi:10.1007/s00210-020-01939-6.
Ennaceur A. One-Trial Object Recognition in Rats and Mice: Methodological and Theoretical Issues. Behav Brain Res. 2010; 215:244-254.
Leger MQ, Bouet A, Haelewyn V, Boulouard B, Schumann-Bard MP, Freret T. Object Recognition Test in Mice. Nat Protoc. 2013; 8(12):2531-2537.
Lueptow LM. Novel Object Recognition Test for the Investigation of Learning and Memory in Mice. J Vis Exp. 2017; 126:55718
Kim MJ, Kim SS, Park KJ, An HJ, Choi YH, Lee NH, Hyun CG. Methyl Jasmonate Inhibits Lipopolysaccharide-Induced Inflammatory Cytokine Production via Mitogen-Activated Protein Kinase and Nuclear Factor-κB Pathways in RAW 2647 Cells. Die Pharmazie. 2016; 71:540-543.
Bakhtiari-Dovvombaygi H, Izadi S, Zare M, Asgari Hassanlouei E, Dinpanah H, Ahmadi-Soleimani SM, Beheshti F. Vitamin D3 Administration Prevents Memory Deficit and Alteration of Biochemical Parameters Induced by Unpredictable Chronic Mild Stress6 in Rats. Sci Rep. 2021; 11:16271.
Rothman SM and Mattson MP. Adverse Stress, Hippocampal Networks, and Alzheimer’s Disease. Neuromol Med. 2010; 12:56-70. doi:10.1007/s12017-009-8107-9.
Panossian A, Wikman G, Kaur P, Asea A. Adaptogens Stimulate Neuropeptide Y and Hsp72 Expression and Release in Neuroglia Cells. Front Neurosci. 2012; 6:6.
Ighodaro OM and Akinloye OA. First Line Defence Antioxidants-Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPX): Their Fundamental Role in the Entire Antioxidant Defence Grid. Alexandria J Med. 2018; 54:287-293. doi:10.1016/j.ajme.2017.09.001.
Pitsikas N. The Role of Nitric Oxide Donors in Schizophrenia: Basic Studies and Clinical Applications. Eur J Pharmacol. 2015; 766:106-113. doi:10.1016/j.ejphar.2015.09.045.
Wink DA, Miranda KM, Espey MG, Pluta RM, Hewett SJ, Colton CGMB. Mechanisms of the Antioxidant Effects of Nitric Oxide. Antioxid Redox Signal. 2001; 3:203-213.
Panossian A and Wikman G. Evidence Based Efficacy of Adaptogens in Fatigue and Molecular Mechanisms Related to their to Stress Protective Activity. Curr Clin Pharmacol. 2011; 4:198-219.
Pawar VS and Hugar S. A Current Status of Adaptogens: Natural Remedy to Stress. Asian Pacific J Trop Dis. 2012; 2:S480-S490.
Zhu S, Shi R, Wang J, Wang JF, Li XM. Chronic unpredictable mild stress Not Chronic Restraint Stress Induces Depressive Behaviours in Mice. Neuroreport. 2014; 25:1151-1155.
Kerksick C and Willoughby D. The Antioxidant Role of Glutathione and N-Acetyl-Cysteine Supplements and Exercise-Induced Oxidative Stress. J Int Soc Sports Nutr. 2005; 2:38-44.
Ma Q. Role of Nrf2 in Oxidative Stress and Toxicity. Annu Rev Pharmacol Toxicol. 2013; 53:401-426.
Schetinger MR, Morsch VM, Bonan C, Wyse AT. NTPDase and 50 -Nucleotidase Activities in Physiological and Disease Conditions: New Perspectives for Human Health. Biofactors. 2007; 31:77-98.
Lovinger DM. Neurotransmitter Roles in Synaptic Modulation, Plasticity, and Learning in the Dorsal Striatum. Neuropharmacol. 2010; 58:951-961.
Loizzo M, Tundis R, Menichini F. Natural Products and Their Derivatives as Cholinesterase Inhibitors in the Treatment of Neurodegenerative Disorders an Update. Curr Med Chem. 2008; 15:1209-1228.
Knopman DS, DeKosky ST, Cummings JL, Chui H, Corey-Bloom J, Relkin N, Small GW, Miller B, Stevens JC. Practice Parameter: Diagnosis of Dementia (An Evidence-Based Review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurol. 2001; 56:1143-1153.
Budzynska B, Boguszewska-Czubara A, Kruk-Slomka M, Skalicka-Wozniak K, Michalak A, Musik I. Effects of Imperatorin on Scopolamine-Induced Cognitive Impairment and Oxidative Stress in Mice. Psychopharmacol. 2015; 232:931-942.
Viana AG, Trent ES, Conroy HE, Raines EM. Fear and Anxiety. Dev Psychopathol. 2021;182-218.
Moghimian M, Azin S, Alavi–Kakhki SS, Kourosh-Arami M, Gholami M, Beheshti F. Preventive Impacts of Vitamin C on Memory Damage Caused by Chronic unpredictable mild stress in Relation to Biochemical Parameters in the Hippocampus of Male Rats. Nutr Neurosci. 2023; 26:1222-1231.

Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tropical Journal of Phytochemistry and Pharmaceutical Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.