Secondary Metabolites Isolation from Endophytic Fungi Diaporthe Arecae and Colletotrichum Gloeosporioides Isolated from Syzygium Cumini Linn
DOI:
https://doi.org/10.26538/tjpps/v4i4.2Keywords:
Characterization, Extraction, Potential, Discovery, LeadAbstract
This study reports some secondary metabolites produced from Diaporthe arecae and Colletotrichum gloeosporioides. These endophytic fungi were isolated from Syzygium cumini Linn plant. The fungal strains were identified based on morphological characteristics and DNA sequence analysis. They were isolated from the plant, followed by its small-scale cultivation and extraction with ethyl acetate. Secondary metabolites from the endophytic fungi were isolated through chromatographic separation and recrystallization. The structures of the isolated secondary metabolites were characterized by 1H-NMR, 13C-NMR, and DEPT-135 spectroscopic data. Column chromatographic treatment of the crude ethyl acetate extract of Diaporthe arecae with solvents of different polarity yielded the compound 1 (6.5 mg) and compound 2 (4.7 mg) respectively. In contrast, the crude extract of Colletotrichum gloeosporioides yielded the compound 3 (2 mg) after treatment with solvents of different polarity. Spectroscopic characterization revealed compound 1 as Ergosterol, compound 2 as 3-(3’-(3”-(3”’-acetoxypropanoyloxy) propanoyloxy) propanoyloxy) propanoic acid and compound 3 as a mixture of ergosterol and 4-methoxy phenol, respectively. The isolation of these compounds implies that endophytic fungi from Syzygium cumini may be a prominent source for the discovery of potential bioactive compounds or lead structures for new drug development.
References
Kaul S, Gupta S, Ahmed M, Dhar MK. Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev. 2012;11(4):487-505.
Ayyanar M, Subash-Babu P. Syzygium cumini (L.) Skeels: A review of its phytochemical constituents and traditional uses. Asian Pac J Trop Biomed. 2012;2(3):240-6.
Jagetia GC, Baliga MS. Syzygium cumini (Jamun) reduces the radiation-induced DNA damage in the cultured human peripheral blood lymphocytes: a preliminary study. Toxicol Lett. 2002;132(1):19-25.
Devi N, Prabakaran J. Bioactive metabolites from an endophytic fungus Penicillium sp. isolated from Centella asiatica. Curr Res Environ Appl Mycol. 2014;4(1):34-43.
Ajay Kumar G. Colletotrichum gloeosporioides: biology, pathogenicity and management in India. J Plant Physiol Pathol. 2014;2(2):2-11.
Sharma M, Kulshrestha S. Colletotrichum gloeosporioides: an anthracnose causing pathogen of fruits and vegetables. Biosci Biotech Res Asia. 2015;12(2):1233-46.
Guarnaccia V, Groenewald JZ, Woodhall J, Armengol J, Cinelli T, Eichmeier A, Ezra D, Fontaine F, Gramaje D, Gutierrez-Aguirregabiria A. Diaporthe diversity and pathogenicity revealed from a broad survey of grapevine diseases in Europe. Persoonia. 2018;40:135.
Khan N, Afroz F, Begum MN, Rony SR, Sharmin S, Moni F, Hasan CM, Shaha K, Sohrab MH. Endophytic Fusarium solani: A rich source of cytotoxic and antimicrobial napthaquinone and aza-anthraquinone derivatives. Toxicol Rep. 2018;5:970-6.
Eyberger AL, Dondapati R, Porter JR. Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod. 2006;69(8):1121-4.
Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ul-Hasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar R. The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol. 2006;122(4):494-510.
Puri SC, Verma V, Amna T, Qazi GN, Spiteller M. An endophytic fungus from Nothapodytes foetida that produces Camptothecin. J Nat Prod. 2005;68(12):1717-9.
Kusari S, Verma VC, Lamshoeft M, Spiteller M. An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol. 2012;28(3):1287-94.
Kusari S, Lamshöft M, Zühlke S, Spiteller M. An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod. 2008;71(2):159-62.
Senthilkumar N, Murugesan S, Mohan V, Muthumary J. Taxol producing fungal endophyte, Colletotrichum gloeosporioides (Penz.) from Tectona grandis L. Curr Biotica. 2013;7:3-15.
Chithra S, Jasim B, Sachidanandan P, Jyothis M, Radhakrishnan E. Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. Phytomedicine. 2014;21(4):534-40.
Kumara PM, Soujanya K, Ravikanth G, Vasudeva R, Ganeshaiah K, Shaanker RU. Rohitukine, a chromone alkaloid and a precursor of flavopiridol, is produced by endophytic fungi isolated from Dysoxylum binectariferum Hook. f and Amoora rohituka (Roxb). Wight & Arn. Phytomedicine. 2014;21(4):541-6.
Su H, Kang J, Cao J, Mo L, Hyde KD. Medicinal plant endophytes produce analogous bioactive compounds. Chiang Mai J Sci. 2014;41(1):1-13.
Chapla VM, Zeraik ML, Leptokarydis IH, Silva GH, Bolzani VS, Young MCM, Pfenning LH, Araújo AR. Antifungal compounds produced by Colletotrichum gloeosporioides, an endophytic fungus from Michelia champaca. Molecules. 2014;19(11):19243-52.
Meyer WL, Lax AR, Templeton GE, Brannon MJ. The structure of gloeosporone, a novel germination self-inhibitor from conidia of Collectotrichum gloeosporioides. Tetrahedron Lett. 1983;24(46):5059-62.
Ohra J, Morita K, Tsujino Y, Tazaki H, Fujimori T, Goering M, Evans S, Zorner P. Production of the phytotoxic metabolite, ferricrocin, by the fungus Colletotrichum gloeosporioides. Biosci Biotech Biochem. 1995;59(1):113-4.
Zhang Q, Wei X, Wang J. Phillyrin produced by Colletotrichum gloeosporioides, an endophytic fungus isolated from Forsythia suspensa. Fitoterapia. 2012;83(8):1500-5.
Wang F, Zhu H, Ma H, Jiang J, Sun W, Cheng L, Zhang G, Zhang Y. Citrinal B, a new secondary metabolite from endophytic fungus Colletotrichum capsici and structure revision of citrinal A. Tetrahedron Lett. 2016;57(37):4250-3.
Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev. 2003;67(4):491-502.
Chang FR, Wang SW, Li CY, Lu YY, Vanson Liu SY, Chen CY, Wu YC, Cheng YB. Natural Products from Diaporthe arecae with Anti-Angiogenic Activity. Isr J Chem. 2019;59(5):439-45.
Zhang HW, Song YC, Tan RX. Biology and chemistry off endophytes. Nat Prod Rep. 2006;23(5):753-71.
Chowdhury NS, Sohrab MH, Rony SR, Sharmin S, Begum MN, Rana MS, Hasan CM. Identification and bioactive potential of endophytic fungi from Monochoria hastata (L.) Solms. Bangladesh J Bot. 2016;45(1):187-93.
Khan MIH, Sohrab MH, Rony SR, Tareq FS, Hasan CM, Mazid MA. Cytotoxic and antibacterial naphthoquinones from an endophytic fungus, Cladosporium sp. Toxicol Rep. 2016;3:861-5.
Sadananda T, Govindappa M, Ramachandra Y. In vitro antioxidant activity of lectin from different endophytic fungi of Viscum album L. J Pharm Res Int. 2014:626-43.
Crouch JA, Clarke BB, Hillman BI. Phylogenetic relationships and fungicide sensitivities of Colletotrichum graminicola isolates from turfgrass in North America. Int Turfgrass Soc Res J. 2005;10:186-95.
White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. 1990;18(1):315-22.
Alzoreky N, Nakahara K. Antibacterial activity of extracts from some edible plants commonly consumed in Asia. Int J Food Microbiol. 2003;80(3):223-30.
Goutam J, Kharwar R, Tiwari VK, Mishra A, Singh S. Isolation and identification of antibacterial compounds isolated from endophytic fungus Emericella qaudrilineata. Nat Prod Chem Res. 2016.
Barnett HL, Hunter BB. Illustrated genera of imperfect fungi. Illustrated Genera of Imperfect Fungi. 1972;3rd ed.
Hunter BK, Russell KE, Zaghloul AK. Preparation, characterization, and antioxidant properties of polystyrenes with 4-methoxyphenol end groups. Can J Chem. 1983;61(1):124-127.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tropical Journal of Phytochemistry and Pharmaceutical Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.