GC-MS Fingerprinting of Methanolic Extract of Moringa oleifera Stem, Leaf and Root
DOI:
https://doi.org/10.26538/tjpps/v3i4.1Keywords:
residue, methanolic extract, alternative medicine, naturopath, Gas Chromatography-Mass Spectrometry (GC-MS), Moringa oleiferaAbstract
Moringa oleifera is a tropical tree species found in both the tropics and sub-tropics. It is famous for its medicinal and nutritional qualities. The leaf is mostly used in different modes. The research aims at comparing the compounds present in the extract of the stem, leaf and root, as well as the residue and unextracted samples using GC-MS. The leaf, stem and root of the tree were collected, dried, ground and extracted with 70% methanol. The extracts, residue and unextracted samples were analysed using GC-MS. Library matches of 80% quality and above were considered. Fifteen (15) compounds were identified in both the leaf and the stem extracts each while seventeen (17) compounds were identified in the root extract with ten (10) of the compounds common to the three samples at different concentrations. Similarly, nine (9) compounds each were found to be common to the extract, residue and unextracted sample for all the three plant parts analysed. Antimicrobial compounds like cyclotrisiloxane, hexamethyl and cyclotetrasiloxane, octamethyl were identified in all the samples and eicosane identified in both the leaf and stem extract. Phytol and neophytadiene with antioxidant anti-inflammatory activities were found in the leaf extract only. The solvent tried to concentrate some compounds in the extract especially the stem sample. However, many compounds were not successfully extracted especially from root. These results will give more insight to the naturopath or alternative medicine users who decide between using different solvents or whole herb. Also, unidentified peaks because of no quality/ any library matches need more work for identification.
References
Sultan R, Ahmed A, Wei L, Saeed H, Islam M, Ishaq M. The anticancer potential of chemical constituents of Moringa oleifera targeting CDK-2 inhibition in estrogen receptor positive breast cancer using in-silico and in vitro approches. BMC Complement Med Ther. 2023;23(1):1-17. doi:10.1186/s12906-023-04198-z
Adeyemi S, Larayetan R, Onoja AD, et al. Anti-hemorrhagic activity of ethanol extract of Moringa
oleifera leaf on envenomed albino rats. Sci Afr. 2021;12:e00742. doi:10.1016/j.sciaf.2021.e00742
Mthiyane FT, Dludla P V., Ziqubu K, et al. A Review on the Antidiabetic Properties of Moringa oleifera Extracts: Focusing on Oxidative Stress and Inflammation as Main Therapeutic Targets. Front Pharmacol. 2022;13(July):1-17. doi:10.3389/fphar.2022.940572
Popoola JO, Obembe OO. Local knowledge, use pattern and geographical distribution of Moringa oleifera Lam. (Moringaceae) in Nigeria. J Ethnopharmacol. 2013;150(2):682-691. doi:10.1016/j.jep.2013.09.043
Meireless D, Gomes J, Lopes L, Hinzmann M, Machado J. A review of properties and pharmaceutical applications of Moringa oleifera: integrative approach on conventional and 5.traditional Asian medicine. Advances in Traditional Medicine. 2020;20:495-515. doi:https://doi.org/10.1007/s13596-020-00468-0
Silambarasan R, Ayyanar M. An ethnobotanical study of medicinal plants in Palamalai region of Eastern Ghats, India. J Ethnopharmacol. 2015;172:162-178. doi:10.1016/j.jep.2015.05.046
Olson ME, Sankaran RP, Fahey JW, Grusak MA, Odee D, Nouman W. Leaf Protein and Mineral Concentrations across the “Miracle Tree” Genus Moringa. Aroca R, ed. PLoS One. 2016;11(7):e0159782. doi:10.1371/journal.pone.0159782
Alain Mune Mune M, Nyobe EC, Bakwo Bassogog C, Minka SR. A comparison on the nutritional quality of proteins from Moringa oleifera leaves and seeds. Yildiz F, ed. Cogent Food Agric. 2016;2(1). doi:10.1080/23311932.2016.1213618
Gopalakrishnan L, Doriya K, Kumar DS. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Science and Human Wellness. 2016;5(2):49-56. doi:10.1016/j.fshw.2016.04.001
Thapa K, Chitwan R. Moringa oleifera : A Review Article on Nutritional Properties and its Prospect in the Context of Nepal. 2019;3(11):47-54. doi:10.31080/ASAG.2019.03.0683
Azad S, Hassan MS. Importance of Moringa Oleifera for Wastewater Treatment : A Review Daffodil International University ( DIU ), Bangladesh. 2020;8(1):415-420. doi:10.20533/ijsed.2046.3707.2020.0049
Chaudhary K, Chaurasia S. Neutraceutical Properties of Moringa oleifera : A Review. 2017;(April).
Egbo CC, Igboaka DC, Uzor PF. Antimicrobial Assay and GC-MS Profile of the Extract of the Endophytic Fungus from Annona muricata (Annonaceae) Leaf. Tropical Journal of Natural Product Research. 2024;8(4). doi:10.26538/tjnpr/v8i4.40
Nwafor FI, Okonta E, Udodeme H, Ugorji C, Inya-Agha S, Odoh UE. Botanical Evaluation, GC-MS Analysis and Anti-Inflammatory Properties of the Leaves of Lasimorpha senegalensis Schott (Araceae). Tropical Journal of Natural Product Research. 2024;8(4):6981-6988. doi:10.26538/tjnpr/v8i4.32
Chetehouna S, Derouiche S, Réggami Y, Boulaares I, Frahtia A. Gas Chromatography Analysis, Mineral Contents and Anti-inflammatory Activity of Sonchus maritimus. Tropical Journal of Natural Product Research. 2024;8(4):6787-6798. doi:10.26538/tjnpr/v8i4.7
Olivia NU, Goodness UC, Obinna OM. Phytochemical profiling and GC-MS analysis of aqueous methanol fraction of Hibiscus asper leaves. Futur J Pharm Sci. 2021;7(1). doi:10.1186/s43094-021-00208-4
Héthelyi, Tétényi P, Dabi E, Dános B. The role of mass spectrometry in medicinal plant research. Biomed Environ Mass Spectrom. 1987;14(11):627-632. doi:10.1002/BMS.1200141110
Chu TY, Chang CH, Liao YC, Chen YC. Microwave-Accelerated Derivatization Processes for the Determination of Phenolic Acids by Gas Chromatography-Mass Spectrometry. Vol 54.; 2001. www.elsevier.com/locate/talanta
Andlauer W, Stumpf C, Fürst P. Influence of the Acetification Process on Phenolic Compounds. J Agric Food Chem. 2000;48(8):3533-3536. doi:10.1021/jf000010j
Carmen García-Parrilla M, Gonzá Lez GA, Heredia FJ, Troncoso AM. Differentiation of Wine Vinegars Based on Phenolic Composition.; 1997. https://pubs.acs.org/sharingguidelines
Centre for Disease Control and Prevention. Toluene. Published online 2019.
Dehpour AA, Babakhani B, Khazaei S, Asadi M. Chemical composition of essential oil and antibacterial activity of extracts from flower of Allium atroviolaceum. Journal of Medicinal Plants Research. 2011;5(16):3667-3672.
Ahsan T, Chen J, Zhao X, Irfan M, Wu Y. Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf. AMB Express. 2017;7(1). doi:10.1186/s13568-017-0351-z
Rizwana H, Alwhibi MS, Soliman DA. Antimicrobial activity and chemical composition of flowers of Matricaria aurea a native herb of Saudi Arabia. Inter J of Pharm. 2016;12(6):576-586. doi:10.3923/ijp.2016.576.586
Jegadeeswari P, Nishanthini A, Muthukumarasamy S. Gc-Ms Analysis of Bioactive Components of Aristolochia Krysagathra ( Aristolochiaceae ). 2012;2(4):226-232.
Swamy MK, Arumugam G, Kaur R, Ghasemzadeh A, Yusoff MM, Sinniah UR. GC-MS Based Metabolite Profiling, Antioxidant and Antimicrobial Properties of Different Solvent Extracts of Malaysian Plectranthus amboinicus Leaves. Evidence-based Complementary and Alternative Medicine. 2017;2017. doi:10.1155/2017/1517683
Venkata RB, Samuel L, Pardha SM, et al. ANTIBACTERIAL, antioxidant activity and gc-ms analysis of Eupatorium odoratum. Asian Journal of Pharmaceutical and Clinical Research. 2012;5(2):99-106.
Swamy MK, Arumugam G, Kaur R, Ghasemzadeh A, Yusoff MM, Sinniah UR. GC-MS Based Metabolite Profiling, Antioxidant and Antimicrobial Properties of Different Solvent Extracts of Malaysian Plectranthus amboinicus Leaves. Evidence-based Complementary and Alternative Medicine. 2017;2017. doi:10.1155/2017/1517683
Chirumamilla P, Dharavath SB, Taduri S. GC–MS profiling and antibacterial activity of Solanum khasianum leaf and root extracts. Bull Natl Res Cent. 2022;46(1). doi:10.1186/s42269-022-00818-9
Gonzalez-Rivera ML, Barragan-Galvez JC, Gasca-Martínez D, Hidalgo-Figueroa S, Isiordia-Espinoza M, Alonso-Castro AJ. In Vivo Neuropharmacological Effects of Neophytadiene. Molecules. 2023;28(8). doi:10.3390/molecules28083457
Wintola OA, Afolayan AJ. Chemical constituents and biological activities of essential oils of hydnora africana thumb used to treat associated infections and diseases in South Africa. Applied Sciences (Switzerland). 2017;7(5). doi:10.3390/app7050443
Jamaluddin F, Mohameda S, Lajis MdN. Hypoglycaemic effect of Stigmast-4-en-3-one, from Parkia speciosa empty pods. Food Chem. 1995;54(1):9-13. doi:https://doi.org/10.1016/0308-8146(95)92656-5
González-Trujano ME, Martínez-González CL, Flores-Carrillo M, Luna-Nophal SI, Contreras-Murillo G, Magdaleno-Madrigal VM. Behavioral and electroencephalographic evaluation of the anticonvulsive activity of Moringa oleifera leaf non-polar extracts and one metabolite in PTZ-induced seizures. Phytomedicine. 2018;39:1-9. doi:10.1016/J.PHYMED.2017.12.009
Mensah-Agyei GO, Ayeni KI, Ezeamagu CO. GC-MS analysis of bioactive compounds and evaluation of antimicrobial activity of the extracts of Daedalea elegans : A Nigerian mushroom. Afr J Microbiol Res. 2020;14(6):294-210. doi:10.5897/AJMR2019.9120
Sinan KI, Etienne OK, Stefanucci A, et al. Chemodiversity and biological activity of essential oils from three species from the Euphorbia genus. Flavour Fragr J. 2021;36(1):148-158. doi:https://doi.org/10.1002/ffj.3624
Ai HW. Antifungal Properties and Chemical Analysis of Essential Oil from Vitex negundo Seeds. Br J Pharm Res. 2014;4(5):541-548. doi:10.9734/bjpr/2014/7079
Seidel V, Taylor PW. In vitro activity of extracts and constituents of Pelagonium against rapidly growing mycobacteria. Int J Antimicrob Agents. 2004;23:613-619. doi:10.1016/j.ijantimicag.2003.11.008
Achi NK, Ohaeri O. GC-MS Determination of Bioactive Constituents of the Methanolic Fractions of GC-MS Determination of Bioactive Constituents of the Methanolic Fractions of Cnidoscolus aconitifolius. 2015;(January). doi:10.9734/BJPR/2015/13893
Balamurugan R, Stalin A, Ignacimuthu S. Molecular docking of γ-sitosterol with some targets related to diabetes. Eur J Med Chem. 2012;47:38-43. doi:https://doi.org/10.1016/j.ejmech.2011.10.007
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tropical Journal of Phytochemistry and Pharmaceutical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.