Phytochemical, Heavy Metal Analysis and HPLC Profiling of Jobelyn® – An Herbal Dietary Supplement

Main Article Content

Rhuada M Oghenekevwe
Salami B Olatunbosun
Akinleye O Moshood
Ayoola A Gloria

Abstract

Jobelyn®, an herbal dietary supplement derived from Sorghum bicolor sheath, is known for its anti-inflammatory, anti-cancer, anti-anaemic, and antioxidant properties due to its bioactive constituents. The therapeutic potential of Jobelyn® has aroused scientific interest. However, data on its proximate, phytochemical, and heavy metal profiles remain scarce. Such data are essential for the critical evaluation of its safety, efficacy, and potential health benefits. This research aims to perform a systematic evaluation of Jobelyn® through proximate assessment, phytochemical constituents, metal composition, and bioactive compounds. Standard procedures were used for qualitative and quantitative phytochemical evaluation, whereas metal analysis was performed using Inductively Coupled Plasma Optical Emission Spectroscopy, and High-Performance Liquid Chromatography was used for chemical profiling. Major phytochemicals found in Jobelyn® include Saponins (48.81 mg/100g), Tannins (45.34 mg/100g), Terpenes (40.58 mg/100g), and Phenols (32.33 mg/100g). Proximate analysis showed that Jobelyn® is rich in carbohydrates (81.3%), crude protein (4.7%), and fatty acids/oil (3.0%). The light and heavy metal evaluation revealed beneficial metals like Sodium (23.30 ppm), Potassium (9.14 ppm), and Iron (1.07 ppm), besides non-essential metals such as Lead (0.05 ppm), Arsenic (0.02 ppm), and Mercury (0.001 ppm). All of which are within the WHO permissible limit. Bioactive compounds like Quercetin (16.95 µg/mg), Formononetin (3.23 µg/mg), Luteolin (2.83 µg/mg), Caffeine (0.31 µg/mg), and Gallic acid (0.13 µg/mg) were identified and quantified by HPLC profiling. The novelty of this research lies in its comprehensive profiling of Jobelyn® as a polyphenol-rich supplement, with formononetin observed for the first time, giving a basis for its scientific repurposing and potential clinical application.

Metrics

Metrics Loading ...

Article Details

How to Cite
Oghenekevwe, R. M., Olatunbosun, S. B., Moshood, A. O., & Gloria, A. A. (2025). Phytochemical, Heavy Metal Analysis and HPLC Profiling of Jobelyn® – An Herbal Dietary Supplement. Tropical Journal of Phytochemistry and Pharmaceutical Sciences, 4(7), 294 – 302. https://doi.org/10.26538/tjpps/v4i7.2
Section
Articles

References

Omorogbe O, Ajayi AM, Ben-Azu B, Oghwere EE, Adebesin, A, Aderibigbe AO, Okubena O, and Umukoro S. Jobelyn® attenuates inflammatory responses and neurobehavioural deficits associated with complete Freund-adjuvant-induced arthritis in mice. Biomed Pharmacother. 2018; 98: 585-593. Doi: 10.1016/j.biopha.2017.12.098.

Khalid W, Ali A, Arshad MS., Afzal F, Akram R, Siddeeg A, Kousar S, Rahim MA, Aziz A, Maqbool Z, Saeed A. Nutrients and bioactive compounds of Sorghum bicolor L. used to prepare functional foods: a review on the efficacy against different chronic disorders. Int. J. Food Prop. 2022; 25(1): 1045–1062. Doi: 10.1080/10942912.2022.2071293

Adebayo AH, Yakubu OF, Egbung GE, Williams OI, and Okubena O. Sub-acute toxicological effects of Jobelyn® on pregnant albino rats. In AIP Conf. Proc. AIP Publishing 2018; 1954(1). Doi: 10.1063/1.5033398.

John R, Abolaji AO, Adedara AO, Ajayi AM, Aderibigbe AO, and Umukoro S. Jobelyn® extends the life span and improves motor function in Drosophila melanogaster exposed to lipopolysaccharide via augmentation of antioxidant status. Metab. Brain Dis. 2022; 37(4): 1031-1040. Doi: 10.1007/s11011-022-00919-4.

Ifeanyi OE. A review on free radicals and antioxidants. Int. J. Curr. Res. Med. Sci. 2018; 4(2): 123-133. Doi: 10.22192/ijcrms.2018.04.02.019.

Suleman M, Khan A, Baqi A, Kakar MS, and Ayuba M. Antioxidants, its role in preventing free radicals and infectious diseases in human body. Pure appl. biol. 2019; 8(1): 380-388. Doi: 10.19045/bspab.2018.700197

Rai RC. Host inflammatory responses to intracellular invaders: Review study. Life Sci. 2020; 240: 117084. Doi: 10.1016/j.lfs.2019.117084.

Pickering RJ, Rosado CJ, Sharma A, Buksh S, Tate M, and de Haan JB. Recent novel approaches to limit oxidative stress and inflammation in diabetic complications. Clin. Transl. Immunol. 2018; 7(4): e1016. Doi: 10.1002/cti2.1016.

Dubois-Deruy E, Peugnet V, Turkieh A, and Pinet F. Oxidative stress in cardiovascular diseases. Antioxidants 2020; 9(9): 864. Doi: 10.3390/antiox9090864.

Singh A, Kukreti R, Saso L, and Kukreti S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules 2019; 24(8): 1583. Doi: 10.3390/molecules24081583.

Trease GE and Evans WC. Pharmacognosy. 11th Edition., Macmillan Publishers, London, UK. 1989.

AOAC (2015). Official method of analysis. Association of Official Analytical Chemists. Washington DC, USA, 15th edition. Doi: 10.12691/jfnr-3-8-1.

Chibuye B, Singh IS, Chimuka L, Maseka KK. Metabolite profiling, phytochemical studies, heavy metal determination and health risk assessment of Entandrophragma delevoyi De Wild in Zambia. S. Afr. J. Bot. 2024; 172:663-77. Doi: https://hdl.handle.net/10539/41084

US EPA Method 6010C (SW: 846) – Inductively coupled Plasma Optical Emission spectroscopy (ICP-OES). Method 6010C, 2000; 3.

Nhan PP and Phu NT. Effect of Time and Water Temperature on Caffeine Extraction from coffee. PJN. 2012; 11(2):100-103. Doi: 10.3923/pjn.2012.100.103.

Shrestha JS, Rijal SK, Pokhrel P, and Rai KP. A Simple HPLC Method for Determination of Caffeine Content in Tea and Coffee. Food Sci. Technol. Nepal 2016; 9: 74-78. Doi: 10.3126/jfstn.v9i0.16200.

Abid A, Dekmouche M, Bechki L, Bireche K, Belkhalfa H, Messaoudi A, Belfar ML. Bioactive Composition Analysis using HPLC-UV Profile and Evaluation of Antioxidant activities of different extracts from Aerial parts of Atractylis aristata batt. Res. J. Pharm. Technol.2022; 15(8): 1-8. Doi:10.52711/0974-360X.2022.00564

Chinwuba P, Ugorji CO, Earnest EO, Lotanna AD, Jeremiah IC, Kingsley OO, Obiageli OC, Chinwuba CC. Pharmacological and Phytochemical Review of Sabicea Brevipes. Trop J Phytochem Pharm. Sci. 2025; 4(2):45-9. Doi: https://doi.org/10.26538/tjpps/v4i2.2

Mohammed HO, Eman F, Mai S, Mohammed SO, Arwa H, Aza S. Cardiac glycosides use and the risk of mortality of cancer; systematic review and meta-analysis of observational studies. Plos One 2017; 12(6): e0178611. Doi:10.1371/journal.pone.0178611

Bui TTA, Do MTT, Do STT, Nguyen TT, Duong CD. Simultaneous Analysis Method for Rutin, Diosmin, Hesperidin, and Quercetin in Solid Food Supplements by HPLC-PDA. Trop J Nat Prod Res. 2025; 9(2): 473 – 479. Doi: 10.26538/tjnpr/v9i2.9.

Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas A, Jaremko M. Important Flavonoids and their Role as a Therapeutic Agent. Molecules 2020; 25(22): 5243. Doi: https://doi.org/10.3390/molecules25225243

Ali C, Dietrich B, Nabil M. Health benefits of flavonoids in diabetes and obesity: from experimental approaches to clinical use. Front. Nutr. 2023; 10: 10.3389. Doi: 10.3389/fnut.2023.1312635.

Khalid AS, Momodu I, Iduh MU, Shittu BS, Maniru N, Tukur M, Auwal AN, Khalid HS, Zakariyya A. Evaluation of Antioxidant and Haematological Effects of Ethanol Extract of Saussurea Lappa on Streptozotocin Induced-Diabetic Wistar Rats. Trop J Phytochem Pharm. Sci. 2024; 3(6):327 – 331. Doi: http://www.doi.org/10.26538/tjpps/v3i6.1

Adiukwu PC, Tebogo MO, Moshapa, F, Rapaka D, Bitra VR, & Tweteise PU. Structural Analysis of Saponin Isolate from the Soapbark Tree Extract. Trop J Nat Prod Res. 2025; 9(1): 7-13. Doi:10.26538/tjnpr/v9i1.2

Timilsena YP, Phosanam A, Stockmann R. Perspectives on Saponins: Food Functionality and Applications. Int J Mol Sci. 2023; 24(17):13538. Doi: 10.3390/ijms241713538.

Sharma K, Kumar V, Kaur J, Tanwar B, Goyal A, Sharma R, Gat Y, Kumar A. Health effects, sources, utilization and safety of tannins: A critical review. Toxin Rev.2021; 40(4):432-44. Doi: 10.1080/15569543.2019.1662813

Tong Z, He W, Fan X, Guo A. Biological Functions of Plant Tannin and its Application in Animal Health. Front. Vet. Sci. 2022; 8: 10.3389. Doi: https://doi.org/10.3389/fvets.2021.803657

Cho KS, Lim Y, Lee K, Lee J, Lee JH, Lee I. Terpenes from forest and Human Health. Toxicol. Res. 2017; 33(2): 97-106. Doi: 10.5487/TR.2017.33.2.097

Cox-Georgian D, Ramadoss N, Dona C, and Basu C. Therapeutic and Medicinal Uses of Terpenes. J. Med. Plants Res. 2019; 12: 333-359. Doi: 10.1007/978-3-030-31269-5_15

Chikowe I, Mtewa AG, and Sesaazi DC. Toxicology and Health Benefits of Plant Alkaloids. Plant Toxins & Phytochem in Drug Disc. 2020; 5: 12. Doi:10.1002/9781119650034.ch5

Heinrich M, Mah J, and Amirkia V. Alkaloids Used as Medicines: Structural Phytochemistry Meets Biodiversity – An Update and Forward Look. Molecules 2021; 26(7): 1836. Doi: 10.3390/molecules26071836

Vreman RA, Goodell AJ, Rodriguez LA, Porco TC, Lustig RH, Kahn JG. Health and economic benefits of reducing sugar intake in the USA, including effects via non-alcoholic fatty liver disease: a microsimulation model. BMJ 2017; 7(8): e013543. Doi: 10.1136/bmjopen-2016-013543.

Warshaw H. and Edelman SV. Practical Strategies to Help Reduce Added Sugars Consumption to Support Glycemic and Weight Management Goals. Clin Diabetes 2021; 39(1): 45 – 56. Doi: 10.2337/cd20-0034

Utami YP, Yulianty P, Djabir YY, Alam G. Antioxidant Activity, Total Phenolic and Total Flavonoid Contents of Etlingera elatior (Jack) R.M. Smith from North Luwu, Indonesia. Trop J Nat Prod Res. 2024; 8(1):5955-5961. Doi: http://www.doi.org/10.26538/tjnpr/v8i1.34

Singh N. and Yadav SS. A review on the health benefits of phenolics derived from dietary spices. Curr. Res. Food Sci. 2022; 5: 1508 – 1523. Doi: 10.1016/j.crfs.2022.09.009

Patel A, Jin C, Handzo B, Kalyanaraman R. Measurement of Moisture content in Pharmaceutical Tablets by Handheld Near-Infrared Spectrometer: Adopting Quality by Design Approach to Analytical Method Lifecycle Management. J. Pharm. Biomed. Anal. 2023; 229: 115381. Doi: 10.1016/j.jpba.2023.115381.

Uadia JO, Chigozie N, Ndubisi VI, Ogbeide OK. Phytochemical Investigation, Proximate Composition, Acute Toxicity, Anti-Inflammatory and Antinociceptive Activities of Extracts of Caesalpinia Pulcherrima Linn Flower. Walisongo J. Chem. 2023; 6(2):194-207. Doi: 10.21580/wjc.v6i2

Ruchi T. & Suresh S. The Science of Ash Values in Pharmacognosy: Evaluating the Efficacy of Medicinal Plants. PEXACY Int. J. Pharm. Sci.2023; 2(11): 75–91. Doi: https://doi.org/10.5281/zenodo.10224349

Bhutani P, Joshi G, Raja N, Bachhav N, Rajanna PK, Bhutani H, Paul AT, Kumar R. US FDA approved drugs from 2015–June 2020: a perspective. J. Med. Chem. 2021; 64(5):2339-81. Doi: 10.1021/acs.jmedchem.0c01786.

Jiang H, Qin X, Wang Q, Xu Q, Wang J, Wu Y, Chen W, Wang C, Zhang T, Xing D, Zhang R. Application of carbohydrates in approved small molecule drugs: A review. Eur. J. Med. Chem. 2021; 223:113633. Doi: 10.1016/j.ejmech.2021.113633.

Cao X, Du X, Jiao H, An Q, Chen R, Fang P, Wang J, Yu B. Carbohydrate-based drugs launched during 2000 - 2021. Acta Pharm. Sin. 2022; 12(10): 3783 – 3821. Doi: 10.1016/j.apsb.2022.05.020.

Correia AM, Genova JL, Saraiva A, Rocha GC. Effect of crude protein and non-essential amino acids on growth performance, blood profile, intestinal health of weaned piglets. Front. Vet. Sci. 2023; 10: 10.3389. Doi: 10.3389/fvets.2023.1243357.

Baum JI, Borsheim E, Allman BR, Walker S. Health Benefits of Dietary Protein throughout the Life Cycle. The Health Benefits of Foods – Current Knowledge and Further Development. IntechOpen. 2020; Available at: Doi: http://dx.doi.org/10.5772/intechopen.91404.

Baby C, Kaur S, Singh J, Prasad R. Velvet bean (Mucuna pruriens): A sustainable protein source for tomorrow. Legum. sci. 2023; 5(3):e178. Doi: 10.1002/leg3.178

Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. A Review on Recent Advances in Nitrogen-Containing Molecules and their Biological Applications. Molecules 2020; 25(8): 1909. Doi: 10.3390/molecules25081909.

Minjeong C. and Kyong P. Association between dietary omega-3 fatty acid intake and depression in postmenopausal women. Nutr Res Pract. 2021; 15(4): 468 - 478. Doi: 10.4162/nrp.2021.15.4.468

Jiang H, Shi X, Fan Y, Wang D, Li B, Zhou J, Pei C, Ma L. Dietary Omega-3 polyunsaturated fatty acids and fish intake and risk of age-related macular degeneration. Clin Nutr. 2021; 40(12): 5662 – 5673. Doi: 10.1016/j.clnu.2021.10.005.

Sass L, Bjarnadóttir E, Stokholm J, Chawes B, Vinding RK, Mora‐Jensen AR, Thorsen J, Noergaard S, Ebdrup BH, Jepsen JR, Fagerlund B. Fish oil supplementation in pregnancy and neurodevelopment in childhood—a randomized clinical trial. Child Dev.2021; 92(4):1624-35. Doi: 10.1111/cdev.13541

Elagizi A, Lavie CJ, O’Keefe E, and Milani R. An Update on Polyunsaturated Fatty acids and Cardiovascular Health. Nutrients 2021; 13(1): 204. Doi: 10.3390/nu13010204.

Guo Y, Ma B, Li X, Hui H, Zhou Y, Li N, Xie X. n-3 PUFA can reduce IL-6 and TNF levels in patients with cancer. Br J Nutr. 2023; 129(1): 54 – 65. Doi: 10.1017/S0007114522000575.

Jomova K, Makova M, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Rhodes CJ, Valko M. Essential metals in health and disease. Chem. Biol. Interact. 2022; 1: 110173. Doi: 10.1016/j.cbi.2022.110173.

Douvris C, Trey V, Bussan D, Bartzas G, Thomas R. How ICP-OES changed the face of trace element analysis: Review of the global application landscape. Sci. Total Environ. 2023; 905:167242. Doi: 10.1016/j.scitotenv.2023.167242.

Huang H, Liao D, Dong Y, Pu R. Effect of quercetin supplementation on plasma lipid profiles, blood pressure, and glucose levels: a systemic review and meta-analysis. Nutr Rev. 2020; 78 (8): 615-626. Doi: 10.1093/nutrit/nuz071.

Di Pierro F, Khan A, Iqtadar S, Mumtaz SU, Chaudhry MN, Bertuccioli A, Derosa G, Maffioli P, Togni S, Riva A, Allegrini P. Quercetin as a possible complementary agent for early-stage COVID-19: Concluding results of a randomized clinical trial. Front. Pharmacol. 2023; 13:1096853. Doi:10.3389/fphar.2022.1096853.

Pignatelli P, Pulcinelli FM, Celestini A, Lenti L, Ghiselli A, Gazzaniga PP, Violi F. The flavonoids quercetin and catechin synergistically inhibit platelet function by antagonizing the intracellular production of hydrogen peroxide. Am J Clin Nutr. 2000; 72 (5): 1150 -1155. Doi: 10.1093/ajcn/72.5.1150.

Shohan M, Nashibi R, Mahmoudian-Sani MR, Abolnezhadian F, Ghafourian M, Alavi SM, Sharhani A, Khodadadi A. The therapeutic efficacy of quercetin in combination with antiviral drugs in hospitalized COVID-19 patients: A randomized controlled trial. Eur. J. Pharmacol. 2022; 914:174615. Doi: 10.1016/j.ejphar.2021.174615.

Zhao Q, Wei J, Zhang H. Effects of Quercetin on the pharmacokinetics of losartan and its metabolites EXP3134 in rats. Xenobiotica 2019; 49(5): 563-568. Doi: 10.1080/00498254.2018.1478168.

Srividya AR, Vishnuvarthan VJ, and Lakshmi KS. Medicinal Uses of Formononetin – A review. J. ethnobiol. Trad. med. 2016; 126: 1197-1209.

Dutra JM, Espitia PJ, and Batista RJ. Formononetin: Biological effects and uses – A review. Food Chem. 2021; 395: 129975. Doi: 10.1016/j.foodchem.2021.129975.

Sharma N, Kabra A. Formononetin: pharmacological properties and therapeutic potential. Naunyn Schmiedebergs Arch. Pharmacol.2025:1-21. Doi: 10.1007/s00210-025-04247-z.

Jin M, Wei L, Wang J, Shen Y, Gao L, Zhao F, Gao Q, Ma Y, Sun Y, Lin Y, Ji G. Formononetin: a review of its source, pharmacology, drug combination, toxicity, derivatives, and drug delivery systems. Front. pharmacol. 2025; 16:1534798. Doi: 10.3389/fphar.2025.1534798

Ntalouka F and Tsirivakou A. Luteolin: A promising natural agent in the management of pain in chronic conditions. Front Pain Res (Lausanne) 2023; 4: 1114428. Doi: 10.3389/fpain.2023.1114428.

Luo Y, Shang P, and Li D. Luteolin: A flavonoid that has Multiple Cardio-protective Effects and its Molecular Mechanisms. Front Pharmacol. 2017; 8: 692. Doi: 10.3389/fphar.2017.00692.

Amrutha S, Moumita B, Abdelhamid B, Pierre D, Tapas KK. The dietary flavonoid, Luteolin, negatively affects neuronal differentiation. Font. Mol. Neurosci. 2019; 12.

Hadidi M, Liñán-Atero R, Tarahi M, Christodoulou MC, Aghababaei F. The potential health benefits of gallic acid: Therapeutic and food applications. Antioxidants. 2024;13(8):1001.

Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Momtaz S, Abbasabadi Z, Rahimi R, Farzaei MH, Bishayee A. Pharmacological effect of gallic acid in health and diseases: A mechanistic review. Iran J Basic Med Sci. 2019; 22(3): 225-237. Doi: 10.22038/ijbms.2019.32806.7897.

Liu YL, Hsu CC, Huang HJ, Chang CJ, Sun SH, Lin AM. Gallic acid attenuated LPS-induced neuroinflammation: Protein aggregation and necroptosis. Mol. Neurobiol. 2020; 57(1): 96 – 104. Doi: 10.1007/s12035-019-01759-7.

Mirshekar MA, Sarkaki A, Farbood Y, Naseri MK, Badavi M, Mansouri MT, Haghparast A. Neuroprotective effects of gallic acid in a rat model of traumatic brain injury: behavioral, electrophysiological, and molecular studies. Iran. J. Basic Med. Sci.2018; 21(10):1056. Doi: 10.1139/cjpp-2014-0546.

Xu Y, Tang G, Zhang C, Wang N, and Feng Y. Gallic Acid and Diabetes Mellitus: Its Association with Oxidative Stress. Molecules 2021; 26(23): 7115. Doi: 10.3390/molecules26237115.

Uddin SJ, Afroz M, Zihad SN, Rahman MS, Akter S, Khan IN, Al-Rabbi SS, Rouf R, Islam MT, Shilpi JA, Nahar L. A systematic review on anti-diabetic and cardioprotective potential of gallic acid: a widespread dietary phytoconstituent. Food Rev. Int.2022; 38(4):420-39. Doi: http://dx.doi.org/10.1080/87559129.2020.1734609

Nowaczewska M, Wicinski M, and Kazmierczak W. The Ambiguous Role of Caffeine in Migraine Headache: From Trigger to Treatment. Nutrient 2020; 12(8): 2259. Doi: 10.3390/nu12082259.

Wang L, Shen X, Wu Y, Zhang D. Coffee and caffeine consumption and depression: A meta-analysis of observational studies. Aust N Z J Psychiatry 2016; 50 (3): 228 – 242. Doi: 10.1177/0004867415603131.

Jing B, Peile L, Yang G, Yanxu Z, Michael S, and Jinshen H. Caffiene is negatively associated with depression in patients aged 20 and older. Front Psychiatry 2022; 13: 1037579. Doi: 10.3389/fpsyt.2022.1037579.

Umukoro S, Eduviere AT, Aladeokin AC, Olugbemide AS. Antidepressant-like Property of Jobelyn®, an African Unique Herbal Formulation, in Mice. Drug Res. 2014; 64(03):146-50. Doi: 10.1055/s-0033-1354366.

Asehinde S, Ajayi A, Bakre A, Omorogbe O, Adebesin A, Umukoro S. Effects of Jobelyn® on isoniazid-induced seizures, biomarkers of oxidative stress and glutamate decarboxylase activity in mice. Basic clin. neurosci.2018; 9(6):389. Doi: 10.32598/bcn.9.6.389.