Antiinflammatory Appraisal of Bidens pilosa (Asteraceae) Leaf Extract in Rodent’s model
Main Article Content
Abstract
The ongoing search for safe antiinflammatory agents is crucial, considering the role of proinflammatory factors in diseases such as asthma, rheumatoid arthritis, cancer, and neurodegenerative disorders. The flora of Nigeria is abundant in medicinal plants used in traditional folk medicine for various inflammatory disorders. Therefore, we evaluates the antiinflammatory activity of the aqueous leaf extract of Bidens pilosa (ALEBP). The antiinflammatory activity was evaluated using egg albumin, agar-induced paw edema models for acute inflammation, complete Freud Adjuvant (CFA)-induced arthritis and cotton pellets granuloma models for chronic inflammation in rats. In each of the experimental models, animals in groups 2, 3, 4, and 5 received doses of the extract at 40, 80, and 160 mg/kg, along with Indomethacin at a dose of 5 mg/kg. Group 1 was administered 10 ml/kg of normal saline. All treatments were given one hour before the induction of inflammation. ALEBP produced significant (P<0.05) and dose-dependent (40-160 mg/kg) reduction of paw edema volume in rats. In chronic inflammation (CFA-induced arthritis), the extract significantly (p< 0.05) inhibited edematous response in a dose-related manner, provoking an inhibitory effect (59.1%, maximum inhibition) at 160 mg/kg on day 21. ALEBP also significantly (p<0.05) and dose-dependently reduces the granuloma weight in a chronic model of granuloma pouch in rats. The findings of the present study indicate that ALEBP possesses antiinflammatory activity, lending pharmacological credence to the suggested use of the plant as a natural remedy in the management of inflammatory conditions in some rural communities of Nigeria.
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Soyocak A, Kurt H, Cosan DT, Saydam FA, Calis IU, Kolaç UK, Koroglu ZO, Degirmenci I, Mutlu FS, GunesHV. Tannic acid exhibits anti-inflammatory effects on formalin-induced paw edema model of inflammation in rats. Hum Exp Toxicol. 2019; 38(11):1296-1301. Doi: 10.1177/0960327119864154
Arulselvan P,Fard MT, Tan WS, Gothai S, Fakurazi S, Norhaizan ME, Kumar SS. Role of antioxidants and natural products in inflammation. Oxid Med Cell Longev. 2016; (1):5276130. Doi: 10.1155/2016/5276130
Wang C, Kim IJ, Seong HR, Noh CH, Park S, Kim TM, Jeong HS, Kim KY, Kim ST, Yuk HG, Kwon SC. Antioxidative and Anti-Inflammatory Activities of Rosebud Extracts of Newly Crossbred Roses. Nutrients. 2023; 15(10):2376. Doi.: 10.3390/nu15102376
Aryal S, Adhikari B, Panthi K, Aryal P, Mallik SK, Bhusal RP, Salehi B, Setzer WN, Sharifi-Rad J, Koirala N. Antipyretic, antinociceptive, and anti-inflammatory activities from Pogostemon benghalensis leaf extract. Asian J. Med Princ and Clinc Pract. 2016;234-241.
Tsuruta K, Takato Shidara, Miyagishi H, Hiroshi Nango, Nakatani Y, Suzuki N, Amano T, Suzuki T, and Yasuhiro Kosuge. Anti-Inflammatory Effects of Miyako Bidens pilosa in a Mouse Model of Amyotrophic Lateral Sclerosis and Lipopolysaccharide-Stimulated BV-2 Microglia. Int J. Mol Sc. 2023; 24(18) :13698-13698. doi: 10.3390/ijms241813698
Lemmens R and Adriaens M. Family Medicinal Plant Gardens, BoD - Books on Demand. 2022
Babington C.C. Manual of British Botany: Containing the Flowering Plants and Ferns Arranged According to Natural Orders, BoD – Books on Demand. 2024
Sumner J. Plants go to war: a botanical history of World War II, Mcfarland & Company, Inc. Superoxide Dismutase. 2019.
Xiao Y, Hou Y, Zhou H, Diallo G, Fiszman M, Wolfson J, Zhou L, Halil Kilicoglu, Chen Y, Su C, Xu H, Mantyh W.G and Zhang R. 'Repurposing non-pharmacological interventions for Alzheimer’s disease through link prediction on biomedical literature', Sci. Reports. 2019;14(1):201-232. Doi: 10.1038/s41598-024-58604-8
Ayu Masyita, Reka Mustika Sari, Ayun Dwi Astuti, Budiman Yasir, Nur Rahma Rumata, Talha Bin Emran, Firzan Nainu, Jesus Simal-Gandara. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. J. Food Chem. 2022:13;100217. doi: 10.1016/j.fochx.2022.100217
Lim B, Cheng Y, Kato T, Pham A, Eliott Le Du, Abhaya Kumar Mishra, Elija Grinhagena, Moreau D, Sakai N, Waser J, & Matile S. Inhibition of Thiol‐Mediated Uptake with Irreversible Covalent Inhibitors. Hel Chi Acta. 2021; 104(8):34- 65
https://doi.org/10.1002/hlca.202100085
Debono M.-W. 'Dynamic protoneural networks in plants', Pl Signa & Behav. 2013; 8(6):24207. doi: 10.4161/psb.24207
Liang Y.-C, Yang M.-T, Lin C.-J, Cicero Lee-Tian Chang and Yang W.-C. 'Bidens pilosa and its active compound inhibit adipogenesis and lipid accumulation via down-modulation of the C/EBP and PPARγ pathways', Sci. Reports. 2016; 6(1):342 doi: 10.1038/srep24285
Goyal M.R. and Ayeleso A.O. Bioactive Compounds of Medicinal Plants, CRC Press. 2018
Kim J, Lee, Y and Lee S.M. 'Antioxidant and anti-inflammatory activities of polyphenols', Int J. Mol Sci. 2019; 20(11):2735.
Tian C, Liu X, Chang Y, Wang R, Lv T, Cui C. and Liu M. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. South Afr J. Botany. 2021;137:257–264. doi:https://doi.org/10.1016/j.sajb.2020.10.022.
Pobiega K, Gniewosz M, & Kraśniewska K. Antimicrobial and antiviral properties of different types of propolis. Zes. Prob Post Nau Rol. 2017; 589:69–79. https://doi.org/10.22630/zppnr.2017.589.22
Chika Ifeanyi Chukwuma, Motlalepula G, Matsabisa Mohammed, Auwal Ibrahim, Ochuko L Erukainure, Matimbha H, Chabalala MD, Shahidul Islam. Medicinal plants with concomitant anti-diabetic and anti-hypertensive effects as potential sources of dual acting therapies against diabetes and hypertension: A review. J. Ethnopharmacol. 2019;10:235:329-360. doi: 10.1016/j.jep.2019.02.024.
Walid Said, Abeer Ahmed Khattab, Saadia Aly Hamed, Sabah Alsayed Abo-Elmaaty, Hany Khalil. Identification of Bioactive and Anticancer Properties of Bidens Pilosa in-vitro Evidence. Asian Pac J. Cancer Prev, 2024;25 (10), 3551-3558.
Li-Ping Yuan, Fei-Hu Chen, Lu Ling, Peng-Fei Dou, Hu Bo, Ming-Mei Zhong, Li-Juan Xia. Protective effects of total flavonoids of Bidens pilosa L. (TFB) on animal liver injury and liver fibrosis. J. Ethnopharmacol. 2008;116(3):539-546
Lee J, Kim J. and Lee S.M. 'Antioxidant and anti-aging effects of vitamin C in skin', J. Clin Aesth Dermatol. 2020; 13(7): 14–16.
Saria J. 'Nutritional Prospects and Phyto-Therapeutical Potentials of the Selected Indigenous Green Leafy Vegetables Commonly Used in Tanzania', Huria J. Tanz. 2021; 27(2): 205. doi: 10.61538/huria.v27i2.898
Ekpendu TO, Akah PA, Adesomoju AA, Okogun JI. Antiinflammatory and antimicrobial activities of the Mitracarpus scaber extracts. Int J. Pharmacogn. 1994; 32: 191-196.
Okoli CO, Akah PA. A pilot evaluation of the anti-inflammatory activity of Culcasia scandens, a traditional antirheumatic agent. J. Altern and Compl Med. 2000;6: 423-427.
Ahmed MM, Qureshi S, Al-bekairi AM, Rao RM. Antiinflammatory activity of Caralluma tubercullata alcoholic extract. Fitoterapia. 1993;64: 359-362.
Perez GRM. Anti-inflammatory activity of Ambrasia artemisaefolia and Rheo spathacae. Phytomed. 1996: 3; 163-167.
Gerhard Vogel H. Drug discovery and evaluation Pharmacological assays 2nd ed. Germany. Springer Publications, 2002.
Ghandi MSA. The anti-inflammatory, analgesic and antipyretic activities of Nigella satire. J. Ethnopharmacol. 2001;76: 45-48.
Dunnett C, Goldsmith C, Buncher CR, Tsay JY. Statistic in Pharmaceutical Industry. 2nd ed. New York. Marcel Dekkar, 1993.
Dumas J, Bourdon U, Remade-Volon G, Adam A. Kinins and peritoneal exudates induced by carragenin and zymosan. J. Pharmacol. 1990;101: 418-422.
Raychaudhuri A, Colombo C, Pastor G, Wong M, Jeng AY. Effect of capsacin on carrageenan induced inflammation in rat pleurisy and exudates substance P level. Agent Actions. 1991; 34: 251- 253.
Utsunomiya I, Nagai S, Ohinishi S. Sequential appearance of IL-1 and IL-6 activities in rat carrageenan-induced pleurisy. J. Immunol. 1991; 147:1803-1809.
Ialenti A, Ianaro A, Moncada S, Di Roossa M. Modulation of acute inflammation by endogenous nitric oxide. Euro J. Pharmacol. 1992; 211: 177- 182.
Majno G, Joris L. Cells, Tissues and Disease Principles of General Pathology. Cambridge. Blackwell Science. 1996; 429-463.
Rafatullah S, Al-Yahya MA, Al-said MS, Abdul Hameed KU, Taragan JS. Mossa. Gastric ulcer and cytoprotective effects of Cymopsis tetragodaba (‛Guar’) in rats. Pharm Biol. 1994; 32: 1673-1701.
Dahiru D, Onubiyi JA, Umaru HA. Phytochemical screening and anti-ulcerogenic effect of Moringa oleifera aqueous leaf extract. Afr J. Trad Comp and Altern Med. 2006; 3: 70-75.
Nair V, Kumar R, Singh S, Gupta YK. Anti-granuloma activity of Terminalia chebula retz. In wistar rats. Eur J. Inflamm. 2012;10:185–91.
Devi RS, Narayan S, Vani G, Devi CSS. Gastroprotective effect of Terminalia arjuma bark extract on diclofenac sodium-induced gastric ulcer. J. Ethnopharmacol. 2007; 167: 71-83.