Biflavonoid Anti-inflammatory Activity of the Araucariaceae Family—A Review

Authors

  • Nafisah Departement of Chemistry, Postgraduate School, IPB University, Bogor, Indonesia
  • Purwantiningsih Sugita Departement of Chemistry, Faculty of Mathematics and Sciences, IPB University, Bogor, Indonesia
  • Budi Arifin Departement of Chemistry, Faculty of Mathematics and Sciences, IPB University, Bogor, Indonesia
  • Setyanto T. Wahyudi Department of Physics, Faculty of Mathematics and Sciences, IPB University, Bogor, Indonesia

DOI:

https://doi.org/10.26538/tjpps/v3i9.1

Keywords:

NF-κB inhibition, Cytokine modulation, Inflammation therapy, Biflavonoids, Araucariaceae, Antioxidants

Abstract

The Araucariaceae family, a group of coniferous plants, has gained attention for its diverse bioactive compounds, particularly biflavonoids. These natural polyphenolic compounds have demonstrated significant anti-inflammatory properties, making them a promising target for pharmacological research. This review consolidates and critically analyzes the current knowledge on the anti-inflammatory activity of biflavonoids isolated from the Araucariaceae family. It explores their chemical structures, mechanisms of action, and potential therapeutic applications. Special attention is given to their ability to modulate key inflammatory pathways, including cytokine suppression, NF-κB inhibition, and antioxidant activity. Additionally, the review highlights challenges in harnessing these compounds for drug development, such as bioavailability and scalability, and discusses future directions in modern drug discovery. By providing a comprehensive overview, this study aims to bridge gaps in the literature and underscore the potential of Araucariaceae-derived biflavonoids in addressing inflammation-related diseases.

         Views | PDF Download | EPUB Download:39 / 20 / 2

References

Oktarina DR, Susilawati Y, Halimah E. The potential of Phyllanthus genus plants as immunomodulatory and anti inflammatory. Indones J Biol Pharm. 2021; 1(2):47–77.

Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li, Yinglun L, Xun W, Ling Z. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018; 9(6):7204–18.

Al Assi G, Al-Bashaereh A, Alsarayreh A, Al-Qaisi Y, Al-Majali I, Khleifat K, Moath A, Haitham Q, Ibrahim A. Evaluation of antibacterial, antioxidant and anti-inflammatory properties of methanol extract of Varthemia iphionoides. Trop J Nat Prod Res. 2023; 7(1):2107–14.

Lopresti AL, Maker GL, Hood SD, Drummond PD. A review of peripheral biomarkers in major depression: The potential of inflammatory and oxidative stress biomarkers. Prog Neuro-Psychopharmacology Biol Psychiatry. 2014; 48:102–11.

Kristianti MTF, Goenawan H, Achadiyani A, Sylviana N, Lesmana R. The potential role of vitamin D administration in the skin aging process through the inflammatory pathway: A systematic review. Trop J Nat Prod Res. 2023; 7(4):2675–81.

Kweki GR, Orhu A, Uzuegbu U, Iwhiwhu, Okeroghene S. Ohwokevwo OA. In-vitro anti-inflammatory and antioxidant potentials of methanol extract of Uvaria chamae (Bush banana) leaves. Trop J Phytochem Pharm Sci. 2024; 3(1):153–7.

Shim SY, Lee S gi, Lee M. Biflavonoids isolated from Selaginella tamariscina and their anti-inflammatory activities via ERK 1/2 Signaling. Molecules. 2018; 23(4):1–12.

Li Q, Ye T, Long T, Peng X. Ginkgetin exerts anti-inflammatory effects on cerebral ischemia/reperfusion-induced injury in a rat model via the TLR4/NF-κB signaling pathway. Biosci Biotechnol Biochem. 2019; 83(4):675–83.

Rong S, Wan D, Fan Y, Liu S, Sun K, Huo J, Zhang P, Li X, Xie X, Wang F, Sun T. Amentoflavone affects epileptogenesis and exerts neuroprotective effects by inhibiting NLRP3 inflammasome. Front Pharmacol. 2019; 10(856):1–13.

Jnawali HN, Park YG, Jeon D, Lee E, Kim Y. Anti-inflammatory activities of biapigenin mediated by actions on p38 MAPK pathway. Bull Korean Chem Soc. 2015; 36(9):2325–9.

Xing J, Yu Z, Zhang X, Li W, Gao D, Wang J, Ma X, Nie X, Wang W. Epicatechin alleviates inflammation in lipopolysaccharide-induced acute lung injury in mice by inhibiting the p38 MAPK signaling pathway. Int Immunopharmacol. 2019; 66:146–53.

Rahman M, Riaz M, Desai UR. Synthesis of biologically relevant biflavanoids - A review. Chem Biodivers. 2007; 4(11):2495–527.

Gontijo VS, dos Santos MH, Viegas Jr. C. Biological and chemical aspects of natural biflavonoids from plants: A brief review. Mini-Reviews Med Chem. 2016; 17(10):834–62.

Gil B, Sanz MJ, Terencio MC, Gunasegaran R, Payá M, Alcaraz MJ. Morelloflavone, a novel biflavonoid inhibitor of human secretory phospholipase A2 with anti-inflammatory activity. Biochem Pharmacol. 1997; 53(5):733–40.

Cheng J, Li Y, Kong J. Ginkgetin inhibits proliferation of HeLa cells via activation of p38/NF-κB pathway. Cell Mol Biol. 2019; 65(4):79–82.

Su X, Zhu Z hua, Zhang L, Wang Q, Xu M ming, Lu C, Zhu Y, Zeng J, Duan JA, Zhao,M. Anti-inflammatory property and functional substances of Lonicerae japonicae caulis. J Ethnopharmacol. 2021; 267(1):1–31.

Kim HP, Park H, Son KH, Chang HW, Kang SS. Biochemical pharmacology of biflavonoids: Implications for anti-inflammatory action. Arch Pharm Res. 2008; 31(3):265–73.

Chaabi M, Antheaume C, Weniger B, Justiniano H, Lugnier C, Lobstein A. Biflavones of Decussocarpus rospigliosii as phosphodiesterases inhibitors. Planta Med. 2007; 73(12):1284–6.

Ramalingam S, Karuppiah M, Thiruppathi M, Palanivelu S, Panchanatham S. Antioxidant potential of biflavonoid attenuates hyperglycemia by modulating the carbohydrate metabolic enzymes in high fat diet/streptozotocin induced diabetic rats. Redox Rep. 2020; 25(1):1–10.

Goossens JF, Goossens L, Bailly C. Hinokiflavone and related C–O–C-Type biflavonoids as anti-cancer compounds: Properties and mechanism of action. Nat Prod Bioprospect. 2021; 11(4):365–77.

Singh AV. Potential of amentoflavone with antiviral properties in COVID-19 treatment. Asian Biomed. 2021; 15(4):153–9.

Shen X, Niu X, Li G, Deng X, Wang J. Amentoflavone Ameliorates Streptococcus suis-induced infection in vitro and in vivo. Appl Env Microbiol. 2018; 84(24):1–11.

Lee MK, Lim SW, Yang H, Sung SH, Lee HS, Park MJ, Kim YC. Osteoblast differentiation stimulating activity of biflavonoids from Cephalotaxus koreana. Bioorganic Med Chem Lett. 2006; 16(11):2850–4.

Kunert O, Swamy RC, Kaiser M, Presser A, Buzzi S, Appa Rao AVN, Schühly W. Antiplasmodial and leishmanicidal activity of biflavonoids from Indian Selaginella bryopteris. Phytochem Lett. 2008; 1(4):171–4.

Andrade AWL, Machado K da C, Machado K da C, Figueiredo DDR, David JM, Islam MT, Uddin SJ, Shilpi JA, Costa JP. In vitro antioxidant properties of the biflavonoid agathisflavone. Chem Cent J. 2018; 12(1):1–9.

Gleńsk M, Włodarczyk M, Stefanowicz P, Kucharska A. Biflavonoids from the Wollemi Pine, Wollemia nobilis (Araucariaceae). Biochem Syst Ecol. 2013; 46:18–21.

Arabiat A, Altayeb M. Assessing the effectiveness of data mining tools in classifying and predicting road traffic congestion. Indones J Electr Eng Comput Sci. 2024; 34(2):1295–303.

Pelter A, Warren R, Usmani JN, Rizvi RH, Ilyas M, Rahman W. The isolation and characterization of two members of a new series of naturally occurring biflavones. Experientia. 1969; 25(4):351–2.

Mashima T, Okigawa M, Kawano N, Khan NU, Ilyas M, Rahman W. On the bisflavones in the leaves of Agathis alba foxworthy. Tetrahedron Lett. 1970; (33):2937–40.

Khan NU, Ilyas M, Rahman W, Mashima T, Okigawa M, Kawano N. Biflavones from the leaves of Araucaria bidwillii Hooker and Agathis alba foxworthy (Araucariaceae). Tetrahedron. 1972; 28(23):5689–95.

Ofman DJ, Markham KR, Vilain C, Molloy BPJ. Flavonoid profiles of New Zealand kauri and other species of Agathis. Phytochemistry. 1995; 38(5):1223–8.

Venditti A, Frezza C, Campanelli C, Foddai S, Bianco A, Serafini M. Phytochemical analysis of the ethanolic extract of Agathis robusta (C. Moore ex F. Muell.) F.M. Bailey. Nat Prod Res. 2017; 31(14):1604–11.

Mohamed ME, Tawfeek N, Elbaramawi SS, Elbatreek MH, Fikry E. Agathis robusta bark extract protects from renal ischemia-reperfusion injury: Phytochemical, in silico and in vivo studies. Pharmaceuticals. 2022; 15(1270):1-31.

Frezza C, Sciubba F, Petrucci R, Serafini M. Phytochemical analysis on the leaves of Agathis microstachya J.F. Bailey & C.T. White. Nat Prod Res. 2022; 36(21):5626–30.

Sirimangkalakitti N, Juliawaty LD, Hakim EH, Waliana I, Saito N, Koyama K, Kinoshita K. Naturally occurring biflavonoids with amyloid β aggregation inhibitory activity for development of anti-Alzheimer agents. Bioorganic Med Chem Lett. 2019; 29(15):1994–7.

Li Y, Wang TT, Gao K. A New Cytotoxic Stigmasterone from Agathis Macrophylla. Nat Prod Commun. 2017; 12(3):343–4.

Fonseca FN, Ferreira AJS, Sartorelli P, Lopes NP, Floh EIS, Handro W, Kato MJ. Phenylpropanoid derivatives and biflavones at different stages of differentiation and development of Araucaria angustifolia. Phytochemistry. 2000; 55(6):575–80.

Yamaguchi LF, Vassão DG, Kato MJ, Di Mascio P. Biflavonoids from Brazilian pine Araucaria angustifolia as potentials protective agents against DNA damage and lipoperoxidation. Phytochemistry. 2005; 66(18):2236–47.

Freitas AM, Almeida MTR, Andrighetti-Fröhner CR, Cardozo FTGS, Barardi CRM, Farias MR, Simões CMO. Antiviral activity-guided fractionation from Araucaria angustifolia leaves extract. J Ethnopharmacol. 2009; 126(3):512–7.

Parveen N, Taufeeq HM, Khan NU din. Bifiavones from the leaves of Araucaria araucana. J Nat Prod. 1987; 50(2):332–22.

Talaat AN, Ebada SS, Labib RM, Esmat A, Youssef FS, Singab ANB. Verification of the anti-inflammatory activity of the polyphenolic-rich fraction of Araucaria bidwillii Hook. using phytohaemagglutinin-stimulated human peripheral blood mononuclear cells and virtual screening. J Ethnopharmacol. 2018; 226(15):44–7.

Ragasa CY, Laygo J, Rideoue JA. Antimicrobial biflavone from Araucaria bidwillii. KIMIKA. 2000; 16(2):65–7.

Chen J, Yang ML, Zeng J, Gao K. Antimicrobial activity of Araucaria cunninghamii Sweet and the chemical constituents of its twigs and leaves. Phytochem Lett. 2013; 6(1):41–5.

Khan NU, Ansari WH, Rahman W, Okigawa M, Kawano N. Two new biflavonyls from Araucaria cunninghamii. Chem Pharm Bull. 1971; 19(7):1500–1501.

Frezza C, Vita D De, Fonti L, Giampaoli O, Dal C, Sciubba F, Venditti A, Scintu C, Jun FA. Secondary metabolites of Araucaria cunninghamii Mudie from central Italy. Plant Biosyst - An Int J Deal with all Asp Plant Biol. 2024; 0(0):1–6.

Kurniawanti, Agusta DD, Sugita P, Suparto IH, Dianhar H, Rahayu DUC. Bioactive compounds of flavone dimers from Indonesian Araucaria columnaris leaves. Rasayan J Chem. 2023; 16(3):1872–82.

Lin YM, Flavin MT, Schure R, Chen FC, Sidwell R, Barnard DL, Huffman JH, Kern ER. Antiviral activities of biflavonoids. Planta Med. 1999; 65(2):120–5.

Agusta DD, Dianhar H, Rahayu DUC, Herawati I, Sugita P. Anticancer and antivirus activities of two biflavonoids from Indonesian Araucaria hunsteinii K Schum Leaves. J Hum Univ (Natural Sci). 2022; 49(3):168–77.

Hwang JH, Choi H, Woo ER, Lee DG. Antibacterial effect of amentoflavone and its synergistic effect with antibiotics. J Microbiol Biotechnol. 2013; 23(7):953–8.

Younis NA, Hemdan A, Zafer MM, Abd-Elsalam WH, Abouelatta SM. Standardization and quantitative analysis of Araucaria Heterophylla extract via an UPLC-MS/MS method and its formulation as an antibacterial phytonanoemulsion gel. Sci Rep. 2022; 12(1):1–14.

Ilyas N, Ilyas M, Rahman W, Okigawa M, Kawano N. Biflavones from the leaves of Araucaria excelsa. Phytochemistry. 1978; 17(5):987–90.

Ilyas M, Seligmann O, Wagner H. Biflavones from the leaves of Araucaria rulei F. Muell. and a survey on biflavanoids of the Araucaria Genus. Zeitschrift für Naturforsch. 1977; 32(3):206–9.

Venditti A, Frezza C, Rossi G, Serafini I, Ciccòla A, Sciubba F, Foddai S, Tomassini L, Bianco A, Serafini M. A new byciclic monoterpene glucoside and a new biflavone from the male reproduction organs of Wollemia nobilis. Fitoterapia. 2019; 133:62–9.

Venditti A, Frezza C, Sciubba F, Foddai S, Serafini M, Bianco A. Terpenoids and more polar compounds from the male cones of Wollemia nobilis. Chem Biodivers. 2017; 14(3):1–7.

Venditti A, Frezza C, Rossi G, Sciubba F, Ornano L, De Vita D, Toniolo C, Tomassini L, Foddai S, Nicoletti M, Di Cocco ME, Bianco A, Serafini M. A new diterpene and other compounds from the unripe female cones of Wollemia nobilis. Nat Prod Res. 2020; 35(21):3839–49.

Frezza C, Venditti A, Rossi G, Serafini I, Pitorri M, Ciccòla A, Foddai S, Bianco A, Serafini M. Phytochemical study on the leaves of Wollemia nobilis. Biochem Syst Ecol. 2017; 74:63–6.

Frezza C, Venditti A, Scandurra C, Ciccòla A, Serafini I, Sciubba F, Foddai S, Franceschin M, Bianco A, Serafini M. Phytochemical profile of Wollemia nobilis half-matured female cones and their potential ethnopharmacological and nutraceutical activities. J Agric Sci Technol A. 2018; 8(3):162–70.

Sugita P, Agusta DD, Dianha H, Suparto IH, Kurniawanti , Rahayu DUC, Luthfan, I. The cytotoxicity and SAR analysis of biflavonoids isolated from Araucaria hunsteinii K. Schum. leaves against MCF-7 and HeLa cancer cells. J Appl Pharm Sci. 2023; 13(10):199–209.

Sugita P, Handayani SDP, Agusta DD, Ambarsari L, Dianhar H, Rahayu DUC. Combined in-silico and in-vitro approaches to evaluate the inhibitory the potential of biflavonoids from Araucaria plants against α-glucosidase as target protein. Rasayan J Chem. 2023; 16(1):361–75.

Yamaguchi LF, Kato MJ, Di Mascio P. Biflavonoids from Araucaria angustifolia protect against DNA UV-induced damage. Phytochemistry. 2009; 70(5):615–20.

Frezza C, Venditti A, De Vita D, Toniolo C, Franceschin M, Ventrone A, Tomassini L, Foddai S, Guiso M, Nicoletti M, Bianco A, Serafini M. Phytochemistry, chemotaxonomy, and biological activities of the Araucariaceae family—A review. Plants. 2020; 9(7):1–73.

Ho YT, Liu IH, Chang ST, Wang SY, Chang HT. In vitro and in vivo antimelanogenesis effects of leaf essential oil from Agathis dammara. Pharmaceutics. 2023; 15(9):1–11.

Chen Z, He D, Deng J, Zhu J, Mao Q. Chemical composition and antibacterial activity of the essential oil from Agathis dammara (Lamb.) rich fresh leaves. Nat Prod Res. 2015; 29(21):2050–3.

Verma RS, Padalia RC, Goswami P, Verma SK, Chauhan A, Darokar MP. Chemical composition and antibacterial activity of the essential oil of kauri pine [Agathis robusta (C. Moore ex F. Muell.) F.M. Bailey] from India. J Wood Chem Technol. 2016; 36(4):270–7.

Ahmed AH, Mohamed SA. Triterpenoids from Agathis robusta Aerial Parts and their hepatopotective activity. Pharmacogn J. 2022; 14(4):362–6.

Petruzzello M. Araucaria. In: Encyclopedia Britannica. 2018;1–2.

Aslam MS, Choudhary BA, Uzair M, Ijaz AS. Phytochemistry of aerial parts of Araucaria columnaris. J Appl Pharm. 2014; 6(1):114.

Aslam MS, Choudhary BA, Uzair M, Subhan Ijaz A. Phytochemical and ethno-pharmacological review of the genus Araucaria - Review. Trop J Pharm Res. 2013; 12(4):651–9.

De Freitas TB, Santos CHK, da Silva MV, Shirai MA, Dias MI, Barros L, Barreiro MF, Ferreira ICFR, Gonçalves OH, Leimann FV. Antioxidants extraction from Pinhão (Araucaria angustifolia (Bertol.) Kuntze) coats and application to zein films. Food Packag Shelf Life. 2018; 15:28–34.

Pansera MR, Sartori DC, Sartori DC, Zanella RA. Araucaria angustifolia and Picrasma crenata extracts as potential agents for the control of phytopathogenic fungi of agricultural interest. Rev Cad PEDAGÓGICO. 2024; 21(8):1–21.

Hamed MM, Ghareeb MA, Shafei AA, Abdel-Aziz MS, Tolba SS. The in vitro evaluation of antioxidant, anticancer and antimicrobial properties of Araucaria heterophylla grown in Egypt. Pharmacologyonline. 2019; 1:221–35.

Khan AW, Abidin Z ul, Sahibzada MUK, Faheem M, Qazi NG, Alam M, Ullah I, Uddin J, Khan A, Al-Harrasi A. Potential biomedical applications of Araucaria araucana as an antispasmodic, bronchodilator, vasodilator, and antiemetic: Involvement of calcium channels. J Ethnopharmacol. 2022; 298:115651.

Jones W, Hill K, Allen J. Wollemia nobilis, a new living Australian genus and species in the Araucariaceae. Telopea. 1995; 6(2–3):173–6.

Bisht B, Nainwal P, Saini P. Evaluation of in vitro anti-inflammatory activity of Agathis robusta. 2012; 2:1304–6.

El-Hawary SS, Rabeh MA, Raey MAE, El-Kadder EMA, Sobeh M, Abdelmohsen UR, Albohy A, Andrianov AM, Bosko IP, Al-Sanea MM, El-Kolobby DG. Metabolomic profiling of three Araucaria species, and their possible potential role against COVID-19. J Biomol Struct Dyn. 2021; 40(14):6426–38.

Abdelhameed MF, Asaad GF, Ragab TIM, Ahmed RF, El Gendy AENG, Abd El-Rahman SS, Elgamal AM, Elshamy AI. Oral and topical anti-inflammatory and antipyretic potentialities of Araucaria bidiwillii shoot essential oil and its nanoemulsion in relation to chemical composition. Molecules. 2021; 26(19):1–23.

Patial PK, Cannoo DS. Phytochemical profile, antioxidant potential and DFT study of Araucaria columnaris (G. Forst.) Hook. branch extracts. Nat Prod Res. 2021; 35(22):4611–5.

Ali D, Abdelrahman R, El Gedaily R, Ezzat S, Meselhy M, Abdel-Sattar E. Evaluation of the anti-inflammatory and antioxidant activities of selected resin exudates. Trop J Nat Prod Res. 2020; 4(7):255–61.

Elshamy AI, Ammar NM, Hassan HA, Al-Rowaily SL, Ragab TI, El Gendy AENG, Abd-ElGawad AM. Essential oil and its nanoemulsion of Araucaria heterophylla resin: Chemical characterization, anti-inflammatory, and antipyretic activities. Ind Crops Prod. 2020; 148:112272.

Rong S, Yang C, Wang F, Wu Y, Sun K, Sun T, Wu Z. Amentoflavone exerts anti-neuroinflammatory effects by Inhibiting TLR4/MyD88/NF- κ B and activating Nrf2/HO-1 Pathway in lipopolysaccharide-induced BV2 microglia. Mediators Inflamm. 2022; 2022:1-12.

Li M, Li B, Hou Y, Tian Y, Chen L, Liu S, Zhang N, Dong J. Anti-inflammatory effects of chemical components from Ginkgo biloba L. male flowers on lipopolysaccharide-stimulated RAW264.7 macrophages. Phyther Res. 2019; 33(4):989–97.

Oh J, Rho HS, Yang Y, Yoon JY, Lee J, Hong YD, Kim HC, Choi SS, Kim TW, Shin SS, Cho JY Extracellular signal-regulated kinase is a direct target of the anti-inflammatory compound amentoflavone derived from Torreya nucifera. Mediators Inflamm. 2013; 2013(761506):1-11.

Ishola IO, Chaturvedi JP, Rai S, Rajasekar N, Adeyemi OO, Shukla R, Narender T. Evaluation of amentoflavone isolated from Cnestis ferruginea Vahl ex DC (Connaraceae) on production of inflammatory mediators in LPS stimulated rat astrocytoma cell line (C6) and THP-1 cells. J Ethnopharmacol. 2013; 146(2):440–8.

Kuo YH, Yeh Y Te, Pan SY, Hsieh SC. Identification and structural elucidation of anti-inflammatory compounds from Chinese olive (Canarium album L.) fruit extracts. Foods. 2019; 8(10):1–14.

Zhou HF, Xie C, Jian R, Kang J, Li Y, Zhuang CL, Yang F, Zhang LL, Lai L, Wu T, Wu X. Biflavonoids from caper (Capparis spinosa L.) fruits and their effects in inhibiting NF-kappa B activation. J Agric Food Chem. 2011; 59(7):3060–5.

Yoon SO, Shin S, Lee HJ, Chun HK, Chung AS. Isoginkgetin inhibits tumor cell invasion by regulating phosphatidylinositol 3-kinase/Akt-dependent matrix metalloproteinase-9 expression. Mol Cancer Ther. 2006; 5(11):2666–75.

Kim HP. The long search for pharmacologically useful anti-inflammatory flavonoids and their action mechanisms: Past, present, and future. Biomol Ther. 2022; 30(2):117–25.

Al-kuraishy HM, Al-Gareeb AI, Kaushik A, Kujawska M, Batiha GES. Ginkgo biloba in the management of the COVID-19 severity. Archiv der Pharmazie. 2022; 355(10);2200188.

Tao Y, Zhu F, Pan M, Liu Q, Wang P. Pharmacokinetic, metabolism, and metabolomic strategies provide deep insight into the underlying mechanism of Ginkgo biloba flavonoids in the treatment of cardiovascular disease. Front Nutr. 2022; 9:857370.

Souza C dos S, Grangeiro MS, Lima Pereira EP, dos Santos CC, da Silva AB, Sampaio GP, Figueiredo DDR, David JM, David JP, da Silva VDA, Butt AM, Costa, SL. Agathisflavone, a flavonoid derived from Poincianella pyramidalis (Tul.), enhances neuronal population and protects against glutamate excitotoxicity. Neurotoxicology. 2018; 65:85–97.

Almeida MMA de, Souza C dos S, Dourado NS, Silva AB da, Ferreira RS, David JM, Costa MDFD, da Silva VDA, Butt AM, Costa SL. Phytoestrogen agathisflavone ameliorates neuroinflammation-induced by LPS and IL-1β and protects neurons in cocultures of glia/neurons. Biomolecules. 2020; 10(4):1–17.

dos Santos BL, dos Santos CC, Soares JRP, da Silva KC, de Oliveira JVR, Pereira GS, de Araújo FM, Costa MDFD, David JM, da Silva VDA, Butt AM, Costa SL. The flavonoid agathisflavone directs brain microglia/macrophages to a neuroprotective anti-inflammatory and antioxidant state via regulation of NLRP3 inflammasome. Pharmaceutics. 2023; 15(5):1–25.

Wu YS, Chen CR, Yeh YT, Lin HH, Peng YH, Lin YL. 7,7”-Dimethoxyagastisflavone inhibits proinflammatory cytokine release and inflammatory cell recruitment through modulating erα signaling. Biomedicines. 2021; 9(1778):1-16.

Ye Y, Guo Y, Luo YT. Anti-inflammatory and analgesic activities of a novel biflavonoid from shells of Camellia oleifera. Int J Mol Sci. 2012; 13(10):12401–11.

Tabares-Guevara JH, Lara-Guzmán OJ, Londoño-Londoño JA, Sierra JA, León-Varela YM, Álvarez-Quintero RM, Osorio EJ, Ramirez-Pineda JR. Natural biflavonoids modulate macrophage-oxidized LDL interaction in vitro and promote atheroprotection in vivo. Front Immunol. 2017; 8(923):1–17.

Al-Sayed E, Gad HA, El-Shazly M, Abdel-Daim MM, Nasser Singab A. Anti-inflammatory and analgesic activities of cupressuflavone from Cupressus macrocarpa: Impact on pro-inflammatory mediators. Drug Dev Res. 2017; 79(1):1–7.

Hayat MF, Batool M, Ahmed H, Azmat R, Ahmed M, Riaz MN. Protective effects of cupressuflavone against doxorubicin-induced hepatic damage in rats. J King Saud Univ - Sci. 2024; 36(7):103240.

Jo A, Yoo HJ, Lee M. Robustaflavone isolated from Nandina domestica using bioactivity-guided fractionation downregulates inflammatory mediators. Molecules. 2019; 24(9):1–13.

Wu XN, Yang Y, Zhang HH, Zhong Y Sen, Wu F, Yu B, Yu CH. Robustaflavone-4′-dimethyl ether from Selaginella uncinata attenuated lipopolysaccharide-induced acute lung injury via inhibiting FLT3-mediated neutrophil activation. Int Immunopharmacol. 2020; 82(106338):1–5.

Rocha MP, Campana PRV, Pádua RM, Souza Filho JD, Ferreira D, Braga FC. (3,3″)-Linked biflavanones from ouratea spectabilis and their effects on the release of proinflammatory cytokines in THP-1 cells. J Nat Prod. 2020; 83(6):1891–8.

Ayepola OR, Chegou NN, Brooks NL, Oguntibeju OO. Kolaviron, a Garcinia biflavonoid complex ameliorates hyperglycemia-mediated hepatic injury in rats via suppression of inflammatory responses. BMC Complement Altern Med. 2013; 13:1–9.

He X, Yang F, Huang X. Proceedings of chemistry, pharmacology, pharmacokinetics and synthesis of biflavonoids. Molecules. 2021; 26(19):1–44.

Islam MT, Zihad SMNK, Rahman MS, Sifat N, Khan MR, Uddin SJ, Rouf R. Agathisflavone: Botanical sources, therapeutic promises, and molecular docking study. Crit Rev. 2019; 71(9):1192–200.

Downloads

Published

2025-01-01

How to Cite

Nafisah, Sugita, P., Arifin, B., & Wahyudi, S. T. (2025). Biflavonoid Anti-inflammatory Activity of the Araucariaceae Family—A Review. Tropical Journal of Phytochemistry and Pharmaceutical Sciences, 3(9), 411–423. https://doi.org/10.26538/tjpps/v3i9.1